Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Focal ablation therapy for renal cancer in the era of active surveillance and minimally invasive partial nephrectomy

Key Points

  • Partial nephrectomy remains the optimal treatment for the management of small renal masses (SRMs), but several focal ablative techniques also exist, of which radiofrequency ablation and cryoablation are most commonly used

  • Ablative techniques continue to be a viable treatment option for SRMs, especially in elderly patients and those with comorbidities; however, active surveillance should be strongly considered as an alternative option

  • Ablative techniques seem to result in favourable short-term and intermediate-term complication rates and approach oncological and functional efficacy equivalent to partial nephrectomy in T1a SRMs; however, repeat ablation can be required and long-term follow-up data are lacking

  • The newest data suggest that ablative techniques are inferior to surgery for stage T1b tumours and long-term outcome data of ablative techniques continue to mature

Abstract

Partial nephrectomy is the optimal surgical approach in the management of small renal masses (SRMs). Focal ablation therapy has an established role in the modern management of SRMs, especially in elderly patients and those with comorbidities. Percutaneous ablation avoids general anaesthesia and laparoscopic ablation can avoid excessive dissection; hence, these techniques can be suitable for patients who are not ideal surgical candidates. Several ablation modalities exist, of which radiofrequency ablation and cryoablation are most widely applied and for which safety and oncological efficacy approach equivalency to partial nephrectomy. Data supporting efficacy and safety of ablation techniques continue to mature, but they originate in institutional case series that are confounded by cohort heterogeneity, selection bias, and lack of long-term follow-up periods. Image guidance and surveillance protocols after ablation vary and no consensus has been established. The importance of SRM biopsy, its optimal timing, the type of biopsy used, and its role in treatment selection continue to be debated. As safety data for active surveillance and experience with minimally invasive partial nephrectomy are expanding, the role of focal ablation therapy in the treatment of patients with SRMs requires continued evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryoablation of a small renal mass.

Similar content being viewed by others

References

  1. Campbell, S. C. et al. Guideline for management of the clinical T1 renal mass. J. Urol. 182, 1271–1279 (2009).

    PubMed  Google Scholar 

  2. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67, 913–924 (2015).

    PubMed  Google Scholar 

  3. Singla, N. & Gahan, J. New technologies in tumor ablation. Curr. Opin. Urol. 26, 248–253 (2016).

    PubMed  Google Scholar 

  4. Woldrich, J. M. et al. Trends in the surgical management of localized renal masses: thermal ablation, partial and radical nephrectomy in the USA, 1998–2008. BJU Int. 111, 1261–1268 (2013).

    PubMed  Google Scholar 

  5. Liss, M. A. et al. Evaluation of national trends in the utilization of partial nephrectomy in relation to the publication of the American Urologic Association guidelines for the management of clinical T1 renal masses. BMC Urol. 14, 101 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Sammon, J. D. et al. Robot-assisted versus laparoscopic partial nephrectomy: utilization rates and perioperative outcomes. Int. Braz. J. Urol. 39, 377–386 (2013).

    PubMed  Google Scholar 

  7. Dulabon, L. M., Lowrance, W. T., Russo, P. & Huang, W. C. Trends in renal tumor surgery delivery within the United States. Cancer 116, 2316–2321 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Pierorazio, P. M. et al. Management of renal masses and localized renal cancer: systematic review and meta-analysis. J. Urol. 196, 989–999 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Long, C. J. et al. Partial nephrectomy for renal masses ≥7 cm: technical, oncological and functional outcomes. BJU Int. 109, 1450–1456 (2012).

    PubMed  Google Scholar 

  10. Badalato, G. M., Kates, M., Wisnivesky, J. P., Choudhury, A. R. & McKiernan, J. M. Survival after partial and radical nephrectomy for the treatment of stage T1bN0M0 renal cell carcinoma (RCC) in the USA: a propensity scoring approach. BJU Int. 109, 1457–1462 (2012).

    PubMed  Google Scholar 

  11. Higgins, L. J. & Hong, K. Renal ablation techniques: state of the art. AJR Am. J. Roentgenol. 205, 735–741 (2015).

    PubMed  Google Scholar 

  12. Regier, M. & Chun, F. Thermal ablation of renal tumors: indications, techniques and results. Dtsch. Arztebl. Int. 112, 412–418 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Gunn, A. J. & Gervais, D. A. Percutaneous ablation of the small renal mass-techniques and outcomes. Semin. Intervent. Radiol. 31, 33–41 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Erinjeri, J. P. & Clark, T. W. Cryoablation: mechanism of action and devices. J. Vasc. Interv. Radiol. 21, S187–S191 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Breen, D. J. & Lencioni, R. Image-guided ablation of primary liver and renal tumours. Nat. Rev. Clin. Oncol. 12, 175–186 (2015).

    PubMed  Google Scholar 

  16. Floridi, C. et al. Microwave ablation of renal tumors: state of the art and development trends. Radiol. Med. 119, 533–540 (2014).

    PubMed  Google Scholar 

  17. Kimura, M., Baba, S. & Polascik, T. J. Minimally invasive surgery using ablative modalities for the localized renal mass. Int. J. Urol. 17, 215–227 (2010).

    PubMed  Google Scholar 

  18. Scheffer, H. J. et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 25, 997–1011 (2014).

    PubMed  Google Scholar 

  19. Tracy, C. R., Kabbani, W. & Cadeddu, J. A. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 107, 1982–1987 (2011).

    PubMed  Google Scholar 

  20. Narayanan, G. & Doshi, M. H. Irreversible electroporation (IRE) in renal tumors. Curr. Urol. Rep. 17, 15 (2016).

    PubMed  Google Scholar 

  21. Trimmer, C. K. et al. Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J. Vasc. Interv. Radiol. 26, 1465–1471 (2015).

    PubMed  Google Scholar 

  22. Venkatesan, A. M., Wood, B. J. & Gervais, D. A. Percutaneous ablation in the kidney. Radiology 261, 375–391 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Wah, T. M. et al. Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int. 113, 416–428 (2014).

    PubMed  Google Scholar 

  24. Kunkle, D. A. & Uzzo, R. G. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer 113, 2671–2680 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Kim, E. H., Tanagho, Y. S., Saad, N. E., Bhayani, S. B. & Figenshau, R. S. Comparison of laparoscopic and percutaneous cryoablation for treatment of renal masses. Urology 83, 1081–1087 (2014).

    PubMed  Google Scholar 

  26. Hinshaw, J. L. et al. Comparison of percutaneous and laparoscopic cryoablation for the treatment of solid renal masses. AJR Am. J. Roentgenol. 191, 1159–1168 (2008).

    PubMed  Google Scholar 

  27. Long, C. J. et al. Percutaneous versus surgical cryoablation of the small renal mass: is efficacy compromised? BJU Int. 107, 1376–1380 (2011).

    PubMed  Google Scholar 

  28. Long, C. J. et al. Role of tumor location in selecting patients for percutaneous versus surgical cryoablation of renal masses. Can. J. Urol. 19, 6417–6422 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Bassignani, M., Moore, Y., Watson, L. & Theodorescu, D. Pilot experience with real-time ultrasound guided percutaneous renal mass cryoablation. J. Urol. 171, 1620–1623 (2004).

    PubMed  Google Scholar 

  30. Silverman, S. G. et al. Renal tumors: MR imaging-guided percutaneous cryotherapy — initial experience in 23 patients. Radiology 236, 716–724 (2005).

    PubMed  Google Scholar 

  31. Gupta, A. et al. Computerized tomography guided percutaneous renal cryoablation with the patient under conscious sedation: initial clinical experience. J. Urol. 175, 447–452 (2006).

    PubMed  Google Scholar 

  32. Ahrar, K. et al. Real-time magnetic resonance imaging-guided cryoablation of small renal tumors at 1.5 T. Invest. Radiol. 48, 437–444 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Allen, B. C. & Remer, E. M. Percutaneous cryoablation of renal tumors: patient selection, technique, and postprocedural imaging. Radiographics 30, 887–900 (2010).

    PubMed  Google Scholar 

  34. Mirza, A. N. et al. Radiofrequency ablation of solid tumors. Cancer J. 7, 95–102 (2001).

    CAS  PubMed  Google Scholar 

  35. Friedman, M. et al. Radiofrequency ablation of cancer. Cardiovasc. Intervent. Radiol. 27, 427–434 (2004).

    PubMed  PubMed Central  Google Scholar 

  36. Rafael Sanchez Salas, M. D. Image-Guided Therapy in Urology https://www.siu-urology.org/society/siu-icud (2015).

    Google Scholar 

  37. Atwell, T. D. et al. Percutaneous renal cryoablation: experience treating 115 tumors. J. Urol. 179, 2136–2140 (2008).

    PubMed  Google Scholar 

  38. Larcher, A. et al. Prediction of complications following partial nephrectomy: implications for ablative techniques candidates. Eur. Urol. 69, 676–682 (2016).

    PubMed  Google Scholar 

  39. Choueiri, T. K. et al. Thermal ablation versus surgery for localized kidney cancer: a surveillance, epidemiology, and end results (SEER) database analysis. Urology 78, 93–98 (2011).

    PubMed  Google Scholar 

  40. Gahan, J. C. et al. The performance of a modified RENAL nephrometry score in predicting renal mass radiofrequency ablation success. Urology 85, 125–129 (2015).

    PubMed  Google Scholar 

  41. Schmit, G. D. et al. Usefulness of R.E.N.A.L. nephrometry scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumors. J. Urol. 189, 30–35 (2013).

    PubMed  Google Scholar 

  42. Maxwell, A. W., Baird, G. L., Iannuccilli, J. D., Mayo-Smith, W. W. & Dupuy, D. E. Renal cell carcinoma: comparison of RENAL nephrometry and PADUA scores with maximum tumor diameter for prediction of local recurrence after thermal ablation. Radiology 283, 590–597 (2016).

    PubMed  Google Scholar 

  43. Schmit, G. D. et al. ABLATE: a renal ablation planning algorithm. AJR Am. J. Roentgenol. 202, 894–903 (2014).

    PubMed  Google Scholar 

  44. Klatte, T., Shariat, S. F. & Remzi, M. Systematic review and meta-analysis of perioperative and oncologic outcomes of laparoscopic cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal tumors. J. Urol. 191, 1209–1217 (2014).

    PubMed  Google Scholar 

  45. Gervais, D. A., McGovern, F. J., Arellano, R. S., McDougal, W. S. & Mueller, P. R. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am. J. Roentgenol 185, 64–71 (2005).

    PubMed  Google Scholar 

  46. Breen, D. J. et al. Management of renal tumors by image-guided radiofrequency ablation: experience in 105 tumors. Cardiovasc. Intervent. Radiol. 30, 936–942 (2007).

    PubMed  PubMed Central  Google Scholar 

  47. Caputo, P. A. et al. Cryoablation versus partial nephrectomy for clinical T1b renal tumors: a matched group comparative analysis. Eur. Urol. 71, 111 (2016).

    PubMed  Google Scholar 

  48. Goldberg, S. N. et al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J. Vasc. Interv. Radiol. 9, 101–111 (1998).

    CAS  PubMed  Google Scholar 

  49. Pierorazio, P. M. et al. Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur. Urol. 68, 408–415 (2015).

    PubMed  Google Scholar 

  50. Kutikov, A. Surveillance of small renal masses in young patients: a viable option in the appropriate candidate. Eur. Urol. Focus 2, 567–568 (2016).

    PubMed  Google Scholar 

  51. Jewett, M. A. et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur. Urol. 60, 39–44 (2011).

    PubMed  Google Scholar 

  52. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02204800 (2016).

  53. Parker, P. A. et al. Illness uncertainty and quality of life of patients with small renal tumors undergoing watchful waiting: a 2-year prospective study. Eur. Urol. 63, 1122–1127 (2013).

    PubMed  Google Scholar 

  54. Patel, H. D. et al. A prospective, comparative study of quality of life among patients with small renal masses choosing active surveillance and primary intervention. J. Urol. 196, 1356–1362 (2016).

    PubMed  Google Scholar 

  55. Kouba, E., Smith, A., McRackan, D., Wallen, E. M. & Pruthi, R. S. Watchful waiting for solid renal masses: insight into the natural history and results of delayed intervention. J. Urol. 177, 466–470 (2007).

    PubMed  Google Scholar 

  56. Mathew, A., Devesa, S. S., Fraumeni, J. F. Jr & Chow, W. H. Global increases in kidney cancer incidence, 1973–1992. Eur. J. Cancer Prev. 11, 171–178 (2002).

    CAS  PubMed  Google Scholar 

  57. Kane, C. J., Mallin, K., Ritchey, J., Cooperberg, M. R. & Carroll, P. R. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 113, 78–83 (2008).

    PubMed  Google Scholar 

  58. Kutikov, A., Egleston, B. L., Wong, Y. N. & Uzzo, R. G. Evaluating overall survival and competing risks of death in patients with localized renal cell carcinoma using a comprehensive nomogram. J. Clin. Oncol. 28, 311–317 (2010).

    PubMed  Google Scholar 

  59. Rosales, J. C. et al. Active surveillance for renal cortical neoplasms. J. Urol. 183, 1698–1702 (2010).

    PubMed  Google Scholar 

  60. Crispen, P. L. et al. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer 115, 2844–2852 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Abouassaly, R., Lane, B. R. & Novick, A. C. Active surveillance of renal masses in elderly patients. J. Urol. 180, 505–508 (2008).

    PubMed  Google Scholar 

  62. Kunkle, D. A., Crispen, P. L., Chen, D. Y., Greenberg, R. E. & Uzzo, R. G. Enhancing renal masses with zero net growth during active surveillance. J. Urol. 177, 849–853 (2007).

    PubMed  Google Scholar 

  63. Halverson, S. J. et al. Accuracy of determining small renal mass management with risk stratified biopsies: confirmation by final pathology. J. Urol. 189, 441–446 (2013).

    PubMed  Google Scholar 

  64. Kutikov, A. et al. Renal mass biopsy: always, sometimes, or never? Eur. Urol. 70, 403–406 (2016).

    PubMed  Google Scholar 

  65. Kapoor, A., Touma, N. J. & Dib, R. E. Review of the efficacy and safety of cryoablation for the treatment of small renal masses. Can. Urol. Assoc. J. 7, E38–E44 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Remer, E. M., Weinberg, E. J., Oto, A., O'Malley, C. M. & Gill, I. S. MR imaging of the kidneys after laparoscopic cryoablation. AJR Am. J. Roentgenol. 174, 635–640 (2000).

    CAS  PubMed  Google Scholar 

  67. Lay, A. H. et al. Oncologic efficacy of radio frequency ablation for small renal masses: clear cell versus papillary subtype. J. Urol. 194, 653–657 (2015).

    PubMed  Google Scholar 

  68. Richard, P. O. et al. Renal tumor biopsy for small renal masses: a single-center 13-year experience. Eur. Urol. 68, 1007–1013 (2015).

    PubMed  Google Scholar 

  69. Leveridge, M. J. et al. Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur. Urol. 60, 578–584 (2011).

    PubMed  Google Scholar 

  70. Iannuccilli, J. D., Grand, D. J., Dupuy, D. E. & Mayo-Smith, W. W. Percutaneous ablation for small renal masses-imaging follow-up. Semin. Intervent. Radiol. 31, 50–63 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Zondervan, P. J. et al. Follow-up after focal therapy in renal masses: an international multidisciplinary Delphi consensus project. World J. Urol. 34, 1657–1665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sherri, M. D. et al. American Urological Association: follow-up for clinically localized renal neoplasms: AUA guideline http://www.auanet.org/guidelines/follow-up-for-clinically-localized-renal-neoplasms (2013).

    Google Scholar 

  73. Kawamoto, S., Permpongkosol, S., Bluemke, D. A., Fishman, E. K. & Solomon, S. B. Sequential changes after radiofrequency ablation and cryoablation of renal neoplasms: role of CT and MR imaging. Radiographics 27, 343–355 (2007).

    PubMed  Google Scholar 

  74. Weight, C. J. et al. Correlation of radiographic imaging and histopathology following cryoablation and radio frequency ablation for renal tumors. J. Urol. 179, 1277–1281 (2008).

    PubMed  Google Scholar 

  75. Raman, J. D., Stern, J. M., Zeltser, I., Kabbani, W. & Cadeddu, J. A. Absence of viable renal carcinoma in biopsies performed more than 1 year following radio frequency ablation confirms reliability of axial imaging. J. Urol. 179, 2142–2145 (2008).

    PubMed  Google Scholar 

  76. Ganguli, S., Brennan, D. D., Faintuch, S., Rayan, M. E. & Goldberg, S. N. Immediate renal tumor involution after radiofrequency thermal ablation. J. Vasc. Interv. Radiol. 19, 412–418 (2008).

    PubMed  Google Scholar 

  77. Kowalczyk, K. J. et al. Use of surveillance imaging following treatment of small renal masses. J. Urol. 190, 1680–1685 (2013).

    PubMed  Google Scholar 

  78. Karam, J. A. et al. Radiofrequency ablation of renal tumours with clinical, radiographical and pathological results. BJU Int. 111, 997–1005 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Allard, C. B. et al. Contrast-enhanced ultrasonography for surveillance of radiofrequency-ablated renal tumors: a prospective, radiologist-blinded pilot study. Urology 86, 1174–1178 (2015).

    PubMed  Google Scholar 

  80. Hui, G. C., Tuncali, K., Tatli, S., Morrison, P. R. & Silverman, S. G. Comparison of percutaneous and surgical approaches to renal tumor ablation: metaanalysis of effectiveness and complication rates. J. Vasc. Interv. Radiol. 19, 1311–1320 (2008).

    PubMed  Google Scholar 

  81. Atwell, T. D. et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J. Vasc. Interv. Radiol. 23, 48–54 (2012).

    PubMed  Google Scholar 

  82. Nielsen, T. K. et al. Oncological outcomes and complication rates after laparoscopic-assisted cryoablation: a European Registry for Renal Cryoablation (EuRECA) multi-institutional study. BJU Int. 119, 390–395 (2017).

    PubMed  Google Scholar 

  83. Graversen, J. A., Mues, A. C. & Landman, J. Laparoscopic ablation of renal neoplasms. J. Endourol. 25, 187–194 (2011).

    PubMed  Google Scholar 

  84. Cestari, A. et al. Laparoscopic cryoablation of solid renal masses: intermediate term followup. J. Urol. 172, 1267–1270 (2004).

    PubMed  Google Scholar 

  85. Kurup, A. N. Percutaneous ablation for small renal masses-complications. Semin. Intervent. Radiol. 31, 42–49 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Gervais, D. A., Arellano, R. S., McGovern, F. J., McDougal, W. S. & Mueller, P. R. Radiofrequency ablation of renal cell carcinoma: part 2, Lessons learned with ablation of 100 tumors. AJR Am. J. Roentgenol. 185, 72–80 (2005).

    PubMed  Google Scholar 

  87. Georgiades, C. S., Hong, K., Bizzell, C., Geschwind, J. F. & Rodriguez, R. Safety and efficacy of CT-guided percutaneous cryoablation for renal cell carcinoma. J. Vasc. Interv. Radiol. 19, 1302–1310 (2008).

    PubMed  Google Scholar 

  88. Carrafiello, G. et al. Post-radiofrequency ablation syndrome after percutaneous radiofrequency of abdominal tumours: one centre experience and review of published works. Australas. Radiol. 51, 550–554 (2007).

    CAS  PubMed  Google Scholar 

  89. Lokken, R. P. et al. Inflammatory nodules mimic applicator track seeding after percutaneous ablation of renal tumors. AJR Am. J. Roentgenol. 189, 845–848 (2007).

    PubMed  Google Scholar 

  90. Kowalczyk, K. J. et al. Comparative effectiveness, costs and trends in treatment of small renal masses from 2005 to 2007. BJU Int. 112, E273–E280 (2013).

    PubMed  Google Scholar 

  91. Kunkle, D. A., Egleston, B. L. & Uzzo, R. G. Excise, ablate or observe: the small renal mass dilemma — a meta-analysis and review. J. Urol. 179, 1227–1233 (2008).

    PubMed  Google Scholar 

  92. El Dib, R., Touma, N. J. & Kapoor, A. Cryoablation versus radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int. 110, 510–516 (2012).

    PubMed  Google Scholar 

  93. Cadeddu, J. A. & Raman, J. D. Renal tumor ablation is a function of patient selection and technique — not the ablation technology. Cancer 113, 2623–2626 (2008).

    PubMed  Google Scholar 

  94. Thompson, R. H. et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur. Urol. 67, 252–259 (2015).

    PubMed  Google Scholar 

  95. Chang, X. et al. Radiofrequency ablation versus partial nephrectomy for clinical T1a renal-cell carcinoma: long-term clinical and oncologic outcomes based on a propensity score analysis. J. Endourol. 29, 518–525 (2015).

    PubMed  Google Scholar 

  96. Katsanos, K. et al. Systematic review and meta-analysis of thermal ablation versus surgical nephrectomy for small renal tumours. Cardiovasc. Intervent. Radiol. 37, 427–437 (2014).

    CAS  PubMed  Google Scholar 

  97. Kutikov, A., Smaldone, M. C. & Uzzo, R. G. Focal therapy for treatment of the small renal mass: dealer's choice or a therapeutic gamble? Eur. Urol. 67, 260–261 (2015).

    PubMed  Google Scholar 

  98. Krambeck, A. E. et al. Radiofrequency ablation of renal tumors in the solitary kidney. Can. J. Urol. 15, 4163–4168 (2008).

    PubMed  Google Scholar 

  99. Turna, B. et al. Minimally invasive nephron sparing management for renal tumors in solitary kidneys. J. Urol. 182, 2150–2157 (2009).

    PubMed  Google Scholar 

  100. Hegarty, N. J. et al. Probe-ablative nephron-sparing surgery: cryoablation versus radiofrequency ablation. Urology 68, 7–13 (2006).

    PubMed  Google Scholar 

  101. Wehrenberg-Klee, E. et al. Impact on renal function of percutaneous thermal ablation of renal masses in patients with preexisting chronic kidney disease. J. Vasc. Interv. Radiol. 23, 41–45 (2012).

    PubMed  Google Scholar 

  102. Mir, M. C. et al. Decline in renal function after partial nephrectomy: etiology and prevention. J. Urol. 193, 1889–1898 (2015).

    PubMed  Google Scholar 

  103. Lucas, S. M. et al. Renal function outcomes in patients treated for renal masses smaller than 4 cm by ablative and extirpative techniques. J. Urol. 179, 75–79 (2008).

    PubMed  Google Scholar 

  104. Larcher, A. et al. Comparison of renal function detriments after local tumor ablation or partial nephrectomy for renal cell carcinoma. World J. Urol. 34, 383–389 (2016).

    PubMed  Google Scholar 

  105. Fossati, N. et al. Minimally invasive partial nephrectomy versus laparoscopic cryoablation for patients newly diagnosed with a single small renal mass. Eur. Urol. Focus 1, 66–72 (2015).

    PubMed  Google Scholar 

  106. Castaneda, C. V. et al. The natural history of renal functional decline in patients undergoing surveillance in the DISSRM registry. Urol. Oncol. 33, 166.e17–166.e20 (2015).

    Google Scholar 

  107. Danzig, M. R. et al. Active surveillance is superior to radical nephrectomy and equivalent to partial nephrectomy for preserving renal function in patients with small renal masses: results from the DISSRM registry. J. Urol. 194, 903–909 (2015).

    PubMed  Google Scholar 

  108. Smaldone, M. C. et al. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer 118, 997–1006 (2012).

    PubMed  Google Scholar 

  109. Nguyen, C. T. et al. Surgical salvage of renal cell carcinoma recurrence after thermal ablative therapy. J. Urol. 180, 104–109 (2008).

    PubMed  Google Scholar 

  110. Matin, S. F. et al. Residual and recurrent disease following renal energy ablative therapy: a multi-institutional study. J. Urol. 176, 1973–1977 (2006).

    PubMed  Google Scholar 

  111. Long, L. & Park, S. Differences in patterns of care: reablation and nephrectomy rates after needle ablative therapy for renal masses stratified by medical specialty. J. Endourol. 23, 421–426 (2009).

    PubMed  Google Scholar 

  112. Breda, A., Anterasian, C. & Belldegrun, A. Management and outcomes of tumor recurrence after focal ablation renal therapy. J. Endourol. 24, 749–752 (2010).

    PubMed  Google Scholar 

  113. Kowalczyk, K. J. et al. Partial nephrectomy after previous radio frequency ablation: the National Cancer Institute experience. J. Urol. 182, 2158–2163 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Cross, B. W., Parker, D. C. & Cookson, M. S. Salvage surgery after renal mass ablation. Urol. Clin. North Am. 44, 305–312 (2017).

    PubMed  Google Scholar 

  115. Karam, J. A. et al. Salvage surgery after energy ablation for renal masses. BJU Int. 115, 74–80 (2015).

    PubMed  Google Scholar 

  116. Jimenez, J. A. et al. Surgical salvage of thermal ablation failures for renal cell carcinoma. J. Urol. 195, 594–600 (2016).

    PubMed  Google Scholar 

  117. Castle, S. M. et al. Cost comparison of nephron-sparing treatments for cT1a renal masses. Urol. Oncol. 31, 1327–1332 (2013).

    PubMed  Google Scholar 

  118. Chehab, M. et al. Percutaneous cryoablation versus partial nephrectomy: cost comparison of T1a tumors. J. Endourol. 30, 170–176 (2016).

    PubMed  Google Scholar 

  119. Wang, Y. et al. Cost-effectiveness of management options for small renal mass: a systematic review. Am. J. Clin. Oncol. 39, 484–490 (2016).

    PubMed  Google Scholar 

  120. Bhan, S. N. et al. Active surveillance, radiofrequency ablation, or cryoablation for the nonsurgical management of a small renal mass: a cost-utility analysis. Ann. Surg. Oncol. 20, 3675–3684 (2013).

    PubMed  Google Scholar 

  121. Chang, S. L., Cipriano, L. E., Harshman, L. C., Garber, A. M. & Chung, B. I. Cost-effectiveness analysis of nephron sparing options for the management of small renal masses. J. Urol. 185, 1591–1597 (2011).

    PubMed  Google Scholar 

  122. Klatte, T. et al. Perioperative, oncologic, and functional outcomes of laparoscopic renal cryoablation and open partial nephrectomy: a matched pair analysis. J. Endourol. 25, 991–997 (2011).

    PubMed  Google Scholar 

  123. Stern, J. M. et al. Intermediate comparison of partial nephrectomy and radiofrequency ablation for clinical T1a renal tumours. BJU Int. 100, 287–290 (2007).

    PubMed  Google Scholar 

  124. Tanagho, Y. S., Bhayani, S. B., Kim, E. H. & Figenshau, R. S. Renal cryoablation versus robot-assisted partial nephrectomy: Washington University long-term experience. J. Endourol. 27, 1477–1486 (2013).

    PubMed  Google Scholar 

  125. Mues, A. C. et al. Clinical, pathologic, and functional outcomes after nephron-sparing surgery in patients with a solitary kidney: a multicenter experience. J. Endourol. 26, 1361–1366 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Guillotreau, J. et al. Robotic partial nephrectomy versus laparoscopic cryoablation for the small renal mass. Eur. Urol. 61, 899–904 (2012).

    PubMed  Google Scholar 

  127. Bensalah, K., Zeltser, I., Tuncel, A., Cadeddu, J. & Lotan, Y. Evaluation of costs and morbidity associated with laparoscopic radiofrequency ablation and laparoscopic partial nephrectomy for treating small renal tumours. BJU Int. 101, 467–471 (2008).

    PubMed  Google Scholar 

  128. Desai, M. M., Aron, M. & Gill, I. S. Laparoscopic partial nephrectomy versus laparoscopic cryoablation for the small renal tumor. Urology 66, 23–28 (2005).

    PubMed  Google Scholar 

  129. Emara, A. M., Kommu, S. S., Hindley, R. G. & Barber, N. J. Robot-assisted partial nephrectomy versus laparoscopic cryoablation for the small renal mass: redefining the minimally invasive 'gold standard'. BJU Int. 113, 92–99 (2014).

    CAS  PubMed  Google Scholar 

  130. Olweny, E. O. et al. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur. Urol. 61, 1156–1161 (2012).

    PubMed  Google Scholar 

  131. Haber, G. P., Lee, M. C., Crouzet, S., Kamoi, K. & Gill, I. S. Tumour in solitary kidney: laparoscopic partial nephrectomy versus laparoscopic cryoablation. BJU Int. 109, 118–124 (2012).

    PubMed  Google Scholar 

  132. Whitson, J. M., Harris, C. R. & Meng, M. V. Population-based comparative effectiveness of nephron-sparing surgery versus ablation for small renal masses. BJU Int. 110, 1438–1443 (2012).

    PubMed  Google Scholar 

  133. Schwartz, B. F. et al. Cryoablation of small peripheral renal masses: a retrospective analysis. Urology 68, 14–18 (2006).

    PubMed  Google Scholar 

  134. Bandi, G. et al. Cryoablation of small renal masses: assessment of the outcome at one institution. BJU Int. 100, 798–801 (2007).

    PubMed  Google Scholar 

  135. Psutka, S. P. et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur. Urol. 63, 486–492 (2013).

    PubMed  Google Scholar 

  136. Ma, Y., Bedir, S., Cadeddu, J. A. & Gahan, J. C. Long-term outcomes in healthy adults after radiofrequency ablation of T1a renal tumours. BJU Int. 113, 51–55 (2014).

    PubMed  Google Scholar 

  137. Hiraoka, K. et al. Radiofrequency ablation for renal tumors: our experience. Int. J. Urol. 16, 869–873 (2009).

    PubMed  Google Scholar 

  138. Levinson, A. W. et al. Long-term oncological and overall outcomes of percutaneous radio frequency ablation in high risk surgical patients with a solitary small renal mass. J. Urol. 180, 499–504 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

Alexander Kutikov received support through the NHI/NCI Cancer Center Support Grant P30 CA006927.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contributions to discussion of its content. All authors wrote and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Serge Ginzburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, S., Tomaszewski, J. & Kutikov, A. Focal ablation therapy for renal cancer in the era of active surveillance and minimally invasive partial nephrectomy. Nat Rev Urol 14, 669–682 (2017). https://doi.org/10.1038/nrurol.2017.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.143

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer