Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on focal therapy for prostate cancer

Subjects

Key Points

  • Focal therapy is an emerging treatment option for low-risk and intermediate-risk prostate cancer

  • Owing to the multifocal nature of prostate cancer, careful patient selection for focal therapy is integral to treatment success: patients with unifocal cancer and those with an intermediate-risk index tumour and a surrounding low-grade secondary tumour might be suitable

  • Adequate preoperative assessment that includes prostate mapping is required to exclude high-grade disease before focal therapy

  • Focal therapy modalities include cryotherapy, high-intensity focused ultrasound, laser ablation, photodynamic therapy, irreversible electroporation, radiofrequency ablation and focal brachytherapy

  • Focal therapies are associated with improved postoperative preservation of sexual and urinary function compared with radical therapies

  • Additional data from large trials are required before the definitive role of focal therapies in prostate cancer can be determined

Abstract

Globally, the increased uptake of serum PSA level screening led to an increase in the number of diagnoses of low-risk and intermediate-risk prostate cancer. Traditionally, these patients have been considered for either active surveillance programmes or radical whole-gland therapies, such as prostatectomy or radiotherapy. Focal therapy is an emerging treatment option that involves the focal ablation of prostate cancer with preservation of surrounding healthy tissue. This approach might result in reduced morbidity when compared with whole-gland therapies. In current practice, much controversy surrounds optimal patient selection and preoperative tumour localization strategies. Focal therapy modalities include cryotherapy, high-intensity focused ultrasound, laser ablation, photodynamic therapy, irreversible electroporation, radiofrequency ablation and focal brachytherapy. However, as long-term oncological data for focal therapies are lacking, formal recommendations for its use cannot be made.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metastatic properties of prostate cancer.
Figure 2: Different ablation strategies.

Similar content being viewed by others

References

  1. Kim, S. P. et al. Contemporary national trends of prostate cancer screening among privately insured men in the United States. Urology http://dx.doi.org/10.1016/j.urology.2016.06.067 (2016).

  2. Shoag, J. et al. Decline in prostate cancer screening by primary care physicians: an analysis of trends in the use of digital rectal examination and prostate specific antigen testing. J. Urol. http://dx.doi.org/10.1016/j.juro.2016.03.171 (2016).

  3. Stamey, T. A. et al. The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years? J. Urol. 172, 1297–1301 (2004).

    Article  PubMed  Google Scholar 

  4. Klotz, L. et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 33, 272–277 (2014).

    Article  PubMed  Google Scholar 

  5. Wilt, T. J. et al. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 367, 203–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klotz, L. et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 33, 272–277 (2015).

    Article  PubMed  Google Scholar 

  7. Weerakoon, M. et al. The current use of active surveillance in an Australian cohort of men: a pattern of care analysis from the Victorian Prostate Cancer Registry. BJU Int. 115, 50–56 (2015).

    Article  PubMed  Google Scholar 

  8. Sathianathen, N. J., Murphy, D. G., van den Bergh, R. C. & Lawrentschuk, N. Gleason pattern 4: active surveillance no more. BJU Int. 117, 856–857 (2015).

    Article  PubMed  Google Scholar 

  9. Lindner, U., Trachtenberg, J. & Lawrentschuk, N. Focal therapy in prostate cancer: modalities, findings and future considerations. Nat. Rev. Urol. 7, 562–571 (2010).

    Article  PubMed  Google Scholar 

  10. Ahmed, H. U. et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat. Clin. Pract. Oncol. 4, 632–642 (2007).

    Article  PubMed  Google Scholar 

  11. Donaldson, I. A. et al. Focal therapy: patients, interventions, and outcomes—a report from a consensus meeting. Eur. Urol. 67, 771–777 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Villers, A., McNeal, J. E., Freiha, F. S. & Stamey, T. A. Multiple cancers in the prostate. Morphologic features of clinically recognized versus incidental tumors. Cancer 70, 2313–2318 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Wise, A. M., Stamey, T. A., McNeal, J. E. & Clayton, J. L. Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 60, 264–269 (2002).

    Article  PubMed  Google Scholar 

  14. Djavan, B. et al. Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen. Tech. Urol. 5, 139–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Mouraviev, V. et al. Prostate cancer laterality as a rationale of focal ablative therapy for the treatment of clinically localized prostate cancer. Cancer 110, 906–910 (2007).

    Article  PubMed  Google Scholar 

  16. Tareen, B. et al. Appropriate candidates for hemiablative focal therapy are infrequently encountered among men selected for radical prostatectomy in contemporary cohort. Urology 73, 351–354; discussion 354–355 (2009).

    Article  PubMed  Google Scholar 

  17. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Med. 15, 559–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Ahmed, H. U. The index lesion and the origin of prostate cancer. N. Engl. J. Med. 361, 1704–1706 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Algaba, F. & Montironi, R. Impact of prostate cancer multifocality on its biology and treatment. J. Endourol. 24, 799–804 (2010).

    Article  PubMed  Google Scholar 

  20. Lin, D. et al. Development of metastatic and non-metastatic tumor lines from a patient's prostate cancer specimen-identification of a small subpopulation with metastatic potential in the primary tumor. Prostate 70, 1636–1644 (2010).

    Article  PubMed  Google Scholar 

  21. Stamey, T. A. et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 71, 933–938 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Wolters, T. et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J. Urol. 185, 121–125 (2011).

    Article  PubMed  Google Scholar 

  23. Ohori, M. et al. Is focal therapy reasonable in patients with early stage prostate cancer (CaP)—an analysis of radical prostatectomy (RP) specimens. J. Urol. (Suppl.) 175, 507 Abstr. 1574 (2006).

    Article  Google Scholar 

  24. Rukstalis, D. B., Goldknopf, J. L., Crowley, E. M. & Garcia, F. U. Prostate cryoablation: a scientific rationale for future modifications. Urology 60 (2 Suppl. 1), 19–25 (2002).

    Article  PubMed  Google Scholar 

  25. Tareen, B., G., Godoy, G. & Taneja, S. S. Focal therapy: a new paradigm for the treatment of prostate cancer. Rev. Urol. 11, 203–212 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Klotz, L. Active surveillance and focal therapy for low-intermediate risk prostate cancer. Translat. Androl. Urol. 4, 342–354 (2015).

    Google Scholar 

  27. Eggener, S. E. et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J. Urol. 178, 2260–2267 (2007).

    Article  PubMed  Google Scholar 

  28. Valerio, M. et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur. Urol. 66, 732–751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mohler, J. L. et al. Prostate cancer, version 3.2012: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw. 10, 1081–1087 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Oken, M. M. et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 5, 649–655 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Thompson, I. et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol. 177, 2106–2131 (2007).

    Article  PubMed  Google Scholar 

  32. Mian, B. M. et al. Role of prostate biopsy schemes in accurate prediction of Gleason scores. Urology 67, 379–383 (2006).

    Article  PubMed  Google Scholar 

  33. Polascik, T. J. et al. Pathologic stage T2a and T2b prostate cancer in the recent prostate-specific antigen era: implications for unilateral ablative therapy. Prostate 68, 1380–1386 (2008).

    Article  PubMed  Google Scholar 

  34. Ong, W. L. et al. Transperineal biopsy prostate cancer detection in first biopsy and repeat biopsy after negative transrectal ultrasound-guided biopsy: the Victorian Transperineal Biopsy Collaboration experience. BJU Int. 116, 568–576 (2015).

    Article  PubMed  Google Scholar 

  35. Katelaris, N. C. et al. Current role of multiparametric magnetic resonance imaging in the management of prostate cancer. Korean J. Urol. 56, 337–345 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Crawford, E. D. et al. Clinical-pathologic correlation between transperineal mapping biopsies of the prostate and three-dimensional reconstruction of prostatectomy specimens. Prostate 73, 778–787 (2013).

    Article  PubMed  Google Scholar 

  37. Moore, C. M. et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur. Urol. 63, 125–140 (2013).

    Article  PubMed  Google Scholar 

  38. Singh, P. B. et al. Prostate cancer tumour features on template prostate-mapping biopsies: implications for focal therapy. Eur. Urol. 66, 12–19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu, Y. et al. MR to ultrasound registration for image-guided prostate interventions. Med. Image Anal. 16, 687–703 (2012).

    Article  PubMed  Google Scholar 

  40. Cornud, F. et al. Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation? J. Urol. 191, 1272–1279 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Lindner, U., Lawrentschuk, N. & Trachtenberg, J. Image guidance for focal therapy of prostate cancer. World J. Urol. 28, 727–734 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Roach, M. 3rd et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix consensus conference. Int. J. Radiat. Oncol. Biol. Phys. 65, 965–974 (2006).

    Article  PubMed  Google Scholar 

  43. Nguyen, P. L. et al. Updated results of magnetic resonance imaging guided partial prostate brachytherapy for favorable risk prostate cancer: implications for focal therapy. J. Urol. 188, 1151–1156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Postema, A. W. et al. Standardization of definitions in focal therapy of prostate cancer: report from a Delphi consensus project. World J. Urol. http://dx.doi.org/10.1007/s00345-016-1782-x (2016).

  45. Madersbacher, S., Pedevilla, M., Vingers, L., Susani, M. & Marberger, M. Effect of high-intensity focused ultrasound on human prostate cancer in vivo. Cancer Res. 55, 3346–3351 (1995).

    CAS  PubMed  Google Scholar 

  46. Chopra, R. et al. MR imaging-controlled transurethral ultrasound therapy for conformal treatment of prostate tissue: initial feasibility in humans. Radiology 265, 303–313 (2012).

    Article  PubMed  Google Scholar 

  47. Lindner, U. et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur. Urol. 57, 1111–1114 (2010).

    Article  PubMed  Google Scholar 

  48. Valerio, M. et al. Initial assessment of safety and clinical feasibility of irreversible electroporation in the focal treatment of prostate cancer. Prostate Cancer Prostatic Dis. 17, 343–347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van den Bos, W. et al. The correlation between the electrode configuration and histopathology of irreversible electroporation ablations in prostate cancer patients. World J. Urol. 34, 657–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zlotta, A. R. et al. Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility and pathological effects on human prostate cancer. Br. J. Urol. 81, 265–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Lindner, U. et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J. Urol. 182, 1371–1377 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Arnott, J. On the Treatment of Cancer by the Regulated Application of an Anesthetic Temperature. 32–54 (J. Churchill, 1851).

    Google Scholar 

  53. Soanes, W. A. & Gonder, M. J. Use of cryosurgery in prostatic cancer. J. Urol. 99, 793–797 (1968).

    Article  CAS  PubMed  Google Scholar 

  54. Gonder, M. J., Soanes, W. A. & Shulman, S. Cryosurgical treatment of the prostate. Invest. Urol. 3, 372–378 (1966).

    CAS  PubMed  Google Scholar 

  55. Marshall, S. & Taneja, S. Focal therapy for prostate cancer: the current status. Prostate Int. 3, 35–41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ward, J. F. & Jones, J. S. Focal cryotherapy for localized prostate cancer: a report from the national Cryo On-Line Database (COLD) Registry. BJU Int. 109, 1648–1654 (2012).

    Article  PubMed  Google Scholar 

  57. Ritch, C. R. & Katz, A. E. Prostate cryotherapy: current status. Curr. Opin. Urol. 19, 177–181 (2009).

    Article  PubMed  Google Scholar 

  58. Gowardhan, B. & Greene, D. Cryotherapy for the prostate: an in vitro and clinical study of two new developments; advanced cryoneedles and a temperature monitoring system. BJU Int. 100, 295–302 (2007).

    Article  PubMed  Google Scholar 

  59. Steed, J., Saliken, J. C., Donnelly, B. J. & Ali-Ridha, N. H. Correlation between thermosensor temperature and transrectal ultrasonography during prostate cryoablation. Can. Associ. Radiol. J. 48, 186–190 (1997).

    CAS  Google Scholar 

  60. Silverman, S. G. et al. MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 217, 657–664 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Overduin, C. G. et al. T1-weighted MR image contrast around a cryoablation iceball: a phantom study and initial comparison with in vivo findings. Med. Phys. 41, 112301 (2014).

    Article  PubMed  Google Scholar 

  62. Tacke, J. et al. Imaging of interstitial cryotherapy — an in vitro comparison of ultrasound, computed tomography, and magnetic resonance imaging. Cryobiology 38, 250–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Barret, E. et al. Morbidity of focal therapy in the treatment of localized prostate cancer Eur. Urol. 63, 618–622 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Barqawi, A. B. et al. Targeted focal therapy for the management of organ confined prostate cancer. J. Urol. 192, 749–753 (2014).

    Article  PubMed  Google Scholar 

  65. Ellis, D. S., Manny, T. B. Jr & Rewcastle, J. C. Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results. Urology. 70, 9–15 (2007).

    Article  PubMed  Google Scholar 

  66. Lambert, E. H., Bolte, K., Masson, P., & Katz, A. E. Focal cryosurgery: encouraging health outcomes for unifocal prostate cancer. Urology. 69, 1117–1120 (2007).

    Article  PubMed  Google Scholar 

  67. Onik, G., Vaughan, D., Lotenfoe, R., Dineen, M. & Brady, J. The “male lumpectomy”: focal therapy for prostate cancer using cryoablation results in 48 patients with at least 2-year follow-up. Urol. Oncol. 26, 500–505 (2008).

    Article  PubMed  Google Scholar 

  68. Truesdale, M. D. et al. An evaluation of patient selection criteria on predicting progression-free survival after primary focal unilateral nerve-sparing cryoablation for prostate cancer: recommendations for follow up. Cancer J. 16, 544–549 (2010).

    Article  PubMed  Google Scholar 

  69. Bahn, D. et al. Focal cryotherapy for clinically unilateral, low-intermediate risk prostate cancer in 73 men with a median follow-up of 3.7 years. Eur. Urol. 62, 55–63 (2012).

    Article  PubMed  Google Scholar 

  70. Durand, M. et al. Focal cryoablation: a treatment option for unilateral low-risk prostate cancer. BJU Int. 113, 56–64 (2014).

    Article  PubMed  Google Scholar 

  71. Guazzoni, G. Investigative study of the role of focal therapy for prostate cancer treatment. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT00928603 (2009).

  72. Katz, A. E. Unilateral nerve-sparing cryoablation for low-risk, clinically localized, unilateral prostate cancer (POTENT-C). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02459912 (2009).

  73. Bianco, F. Fuse Image MRI Guided Prostate Cryotherapy (FIPC). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02381990 (2015).

  74. Mouraviev, V., Johansen, T. E. & Polascik, T. J. Contemporary results of focal therapy for prostate cancer using cryoablation. J. Endourol. 24, 827–834 (2010).

    Article  PubMed  Google Scholar 

  75. Shah, T. T. et al. Focal cryotherapy of localized prostate cancer: a systematic review of the literature. Expert Rev. Anticancer Ther. 14, 1337–1347 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Lynn, J. G., Zwemer, R. L. & Chick, A. J. The biological application of focused ultrasonic waves. Science 96, 119–120 (1942).

    Article  CAS  PubMed  Google Scholar 

  77. Copelan, A., Hartman, J., Chehab, M. & Venkatesan, A. M. High-intensity focused ultrasound: current status for image-guided therapy. Seminars Intervent. Radiol. 32, 398–415 (2015).

    Article  Google Scholar 

  78. Hoogenboom, M. et al. Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects. Ultrasound Med. Biol. 41, 1500–1517 (2015).

    Article  PubMed  Google Scholar 

  79. Hectors, S. J., Jacobs, I., Moonen, C. T., Strijkers, G. J. & Nicolay, K. MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: current status and future needs. Magn. Reson. Med. 75, 302–317 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Napoli, A. et al. Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience. Eur. Urol. 63, 395–398 (2013).

    Article  PubMed  Google Scholar 

  81. Lukka, H. et al. High-intensity focused ultrasound for prostate cancer: a systematic review. Clin. Oncol. (R. Coll. Radiol.) 23, 117–127 (2011).

    Article  CAS  Google Scholar 

  82. Ahmed, H. U. et al. Focal therapy for localized prostate cancer: a phase I/II trial. J. Urol. 185, 1246–1254 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Beerlage, H. P., Thuroff, S., Debruyne, F. M., Chaussy, C. & de la Rosette, J. J. Transrectal high-intensity focused ultrasound using the Ablatherm device in the treatment of localized prostate carcinoma. Urology 54, 273–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Souchon, R. et al. Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results. Ultrasound Med. Biol. 29, 1007–1015 (2003).

    Article  PubMed  Google Scholar 

  85. Muto, S. et al. Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn. J. Clin. Oncol. 38, 192–199 (2008).

    Article  PubMed  Google Scholar 

  86. Murat, F. J. et al. 854 Focal therapy of prostate cancer (PCA) with HIFU: influence on erectile dysfunction (ED). Eur. Urol. Supplements 8, 334 (2009).

    Article  Google Scholar 

  87. El Fegoun, A. B. et al. Focal therapy with high-intensity focused ultrasound for prostate cancer in the elderly. A feasibility study with 10 years follow-up. Int. Braz. J. Urol. 37, 213–219 (2011).

    Article  PubMed  Google Scholar 

  88. Tay, K. J. et al. Initial experience with MRgFUS focal therapy for low-risk prostate cancer. J. Endourol. 25, A99–A100 (2011).

    Google Scholar 

  89. Dickinson, L. et al. A multi-centre prospective development study evaluating focal therapy using high intensity focused ultrasound for localised prostate cancer: the INDEX study. Contemp. Clin. Trials 36, 68–80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Velthoven, R. et al. A prospective clinical trial of HIFU hemiablation for clinically localized prostate cancer. Prostate Cancer Prostatic Dis. 19, 79–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Van Velthoven, R. et al. Primary zonal high intensity focused ultrasound for prostate cancer: results of a prospective phase iia feasibility study. Prostate Cancer 2014, 756189 (2014); erratum 2014, 640859 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Feijoo, E. R. et al. Focal high-intensity focused ultrasound targeted hemiablation for unilateral prostate cancer: a prospective evaluation of oncologic and functional outcomes. Eur. Urol. 69, 214–220 (2016).

    Article  PubMed  Google Scholar 

  93. Wenger, H., Yousuf, A., Oto, A. & Eggener, S. Laser ablation as focal therapy for prostate cancer. Curr. Opin. Urol. 24, 236–240 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Eymerit-Morin, C. et al. Histopathology of prostate tissue after vascular-targeted photodynamic therapy for localized prostate cancer. Virchows Arch. 463, 547–552 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Raz, O. et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur. Urol. 58, 173–177 (2010).

    Article  PubMed  Google Scholar 

  96. Schwarzmaier, H. J. et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur. J. Radiol 59, 208–215 (2006).

    Article  PubMed  Google Scholar 

  97. Streitparth, F. et al. MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc. Intervent. Radiol. 32, 320–325 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Lepor, H., Llukani, E., Sperling, D. & Futterer, J. J. Complications, recovery, and early functional outcomes and oncologic control following in-bore focal laser ablation of prostate cancer. Eur. Urol. 68, 924–926 (2015).

    Article  PubMed  Google Scholar 

  99. Oto, A. et al. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 267, 932–940 (2013).

    Article  PubMed  Google Scholar 

  100. Natarajan, S. et al. Focal laser ablation of prostate cancer: phase I clinical trial. J. Urol. 196, 68–75 (2015).

    Article  PubMed  Google Scholar 

  101. Feller, J. Phase II laser focal therapy of prostate cancer (LITT or FLA). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02243033 (2014).

  102. Futterer, J. MR-guided focal laser ablation of the prostate. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02200809 (2014).

  103. Trachtenberg, J. MRI targeted focal laser thermal therapy of prostate cancer (FLTT002). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01094665 (2010).

  104. Woodrum, D. Focal laser ablation of prostate cancer tumors. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02600156 (2015).

  105. Polnikorn, N. & Timpatanapong, P. Photochemotherapy of psoriasis. A review of mechanism and report of successful, treatment in pustular psoriasis. J. Med. Assoc. Thai. 60, 510–515 (1977).

    CAS  PubMed  Google Scholar 

  106. Azzouzi, A. R., Lebdai, S., Benzaghou, F. & Stief, C. Vascular-targeted photodynamic therapy with TOOKAD Soluble in localized prostate cancer: standardization of the procedure. World J. Urol. 33, 937–944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Azzouzi, A. R. et al. TOOKAD soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J. Urol. 33, 945–953 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Windahl, T., Andersson, S. O. & Lofgren, L. Photodynamic therapy of localised prostatic cancer. Lancet 336, 1139 (1990).

    Article  CAS  PubMed  Google Scholar 

  109. Trachtenberg, J. et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int. 102, 556–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Davidson, S. R. et al. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. Phys. Med. Biol. 54, 2293–2313 (2009).

    Article  PubMed  Google Scholar 

  111. Huang, Z. et al. Magnetic resonance imaging correlated with the histopathological effect of Pd-bacteriopheophorbide (Tookad) photodynamic therapy on the normal canine prostate gland. Lasers Surg. Med. 38, 672–681 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Azzouzi, A. R. et al. TOOKAD® soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int. 112, 766–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Lebdai, S. et al. Feasibility, safety, and efficacy of salvage radical prostatectomy after Tookad® soluble focal treatment for localized prostate cancer. World J. Urol. 33, 965–971 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Pech, M. et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc. Intervent. Radiol. 34, 132–138 (2011).

    Article  PubMed  Google Scholar 

  115. Martin, R. C. 2nd, McFarland, K., Ellis, S. & Velanovich, V. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J. Am. Coll. Surg. 215, 361–369 (2012).

    Article  PubMed  Google Scholar 

  116. Charpentier, K. P. Irreversible electroporation for the ablation of liver tumors: are we there yet? Arch. Surg. 147, 1053–1061 (2012).

    Article  PubMed  Google Scholar 

  117. Rubinsky, J., Onik, G., Mikus, P. & Rubinsky, B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180, 2668–2674 (2008).

    Article  PubMed  Google Scholar 

  118. Niessen, C. et al. Percutaneous irreversible electroporation (IRE) of prostate cancer: contrast-enhanced ultrasound (CEUS) findings. Clin. Hemorheol. Microcirc. 61, 135–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Valerio, M. et al. A prospective development study investigating focal irreversible electroporation in men with localised prostate cancer: Nanoknife Electroporation Ablation Trial (NEAT). Contemporary Clin. Trials 39, 57–65 (2014).

    Article  Google Scholar 

  120. Ting, F. et al. Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control. Prostate Cancer Prostatic Dis. 19, 46–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. de la Rosette, J. Multi-Center Randomized Clinical Trial Irreversible Electroporation for the Ablation of Localized Prostate Cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01835977 (2013).

  122. Crook, J., Lukka, H., Klotz, L., Bestic, N. & Johnston, M. Systematic overview of the evidence for brachytherapy in clinically localized prostate cancer. CMAJ 164, 975–981 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Crook, J. M., Potters, L., Stock, R. G. & Zelefsky, M. J. Critical organ dosimetry in permanent seed prostate brachytherapy: defining the organs at risk. Brachytherapy 4, 186–194 (2005).

    Article  PubMed  Google Scholar 

  124. Chao, M. W. et al. Brachytherapy: state-of-the-art radiotherapy in prostate cancer. BJU Int. 116, (Suppl. 3) 80–88 (2015).

    Article  PubMed  Google Scholar 

  125. Al-Qaisieh, B. et al. Dosimetry modeling for focal low-dose-rate prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 92, 787–793 (2015).

    Article  PubMed  Google Scholar 

  126. Cosset, J. M. et al. Focal brachytherapy for selected low-risk prostate cancers: a pilot study. Brachytherapy 12, 331–337 (2013).

    Article  PubMed  Google Scholar 

  127. Bachaud, J.-M. Phase II study of feasibility of focal therapy for prostate cancer of good prognosis with permanent i125 localized implant. (CURIEFOCALE). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01902680 (2013).

  128. Morris, W. Focal therapy for prostate cancer - a pilot study of focal low dose rate brachytherapy (FTPC). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01830166 (2013).

  129. Benoit, R. Prospective evaluation of focal brachytherapy using Cesium-131 for patients with low risk prostate cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02290366 (2014).

  130. Fernandezots, A. Hemiablative focal brachytherapy pilot study. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02643511 (2015).

  131. Langley, S. Hemi-ablative prostate brachytherapy (HAPpy). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02632669 (2015).

  132. Hu, B., Hu, B., Chen, L., Li, J. & Huang, J. Contrast-enhanced ultrasonography evaluation of radiofrequency ablation of the prostate: a canine model. J. Endourol. 24, 89–93 (2010).

    Article  PubMed  Google Scholar 

  133. Richstone, L. et al. Ablation of bull prostate using novel bipolar radiofrequency ablation probe. J. Endourol. 23, 11–16 (2009).

    Article  PubMed  Google Scholar 

  134. Moore, C. M. et al. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int. 116, 888–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Yap, T. et al. The effects of focal therapy for prostate cancer on sexual function: a combined analysis of three prospective trials. Eur. Urol. 69, 844–851 (2015).

    Article  PubMed  Google Scholar 

  136. Burnett, A. L. et al. Erectile function outcome reporting after clinically localized prostate cancer treatment. J. Urol. 178, 597–601 (2007).

    Article  PubMed  Google Scholar 

  137. Ramsay, C. R. et al. Ablative therapy for people with localised prostate cancer: a systematic review and economic evaluation. Health Technol. Assess. 19, 1–490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Eberli, D. Intervention Trial Evaluating Focal Therapy Using High Intensity Focused Ultrasound for the Treatment of Prostate Cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02265159 (2015).

  139. Bladou, F. Focal therapy using HIFU for localised prostate cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02016040 (2013).

  140. InSightec. Focal MR-guided focused ultrasound treatment of localized low-intermediate risk prostate cancer: feasibility study. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT01226576 (2016).

  141. Emberton, M. Focal prostate radiofrequency ablation (ProRAFT). ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02294903 (2014).

  142. PowSang, J. Focal prostate radio-frequency ablation. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02328807 (2014).

  143. Machtay, M. Magnetic resonance guided focal stereotactic radiosurgery in treating patients with low- or intermediate-risk localized prostate cancer. ClinicalTrials.govhttps://clinicaltrials.gov/show/NCT02163317 (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.P. and N.K. researched data for and wrote the article. U.L. and N.L. made substantial contributions to discussions of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nathan Lawrentschuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Summary of search strategy. (PDF 109 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, M., Krishnananthan, N., Lindner, U. et al. An update on focal therapy for prostate cancer. Nat Rev Urol 13, 641–653 (2016). https://doi.org/10.1038/nrurol.2016.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing