Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting GRPR in urological cancers—from basic research to clinical application

Abstract

Gastrin releasing peptide (GRP) is a regulatory peptide that acts through its receptor (GRPR) to regulate physiological functions in various organs. GRPR is overexpressed in neoplastic cells of most prostate cancers and some renal cell cancers and in the tumoral vessels of urinary tract cancers. Thus, targeting these tumours with specifically designed GRP analogues has potential clinical application. Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues have been designed and tested in various animal tumour models with the aim of receptor targeting for tumour diagnosis or therapy. All three categories of compound were found suitable for tumour targeting in animal models. The cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials; however, the first clinical studies of radioactive GRP analogues—both agonists and antagonists—suggest promising opportunities for both diagnostic tumour imaging and radiotherapy of prostate and other GRPR-expressing cancers.

Key Points

  • Gastrin-releasing peptide (GRP) regulates physiological functions in various organs and has growth-stimulating properties in tumours

  • The GRP receptor (GRPR) is overexpressed in the neoplastic cells of most prostate cancers and in some renal cell cancers and in the tumoral vessels of urinary tract cancers

  • Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues were found to be suitable targeting agents for diagnosis or therapy in animal models

  • Cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials

  • The first clinical study of radioactive GRP analogues suggests promising opportunities for the diagnosis and therapy of prostate and other cancers

  • Newly designed radiolabelled GRPR antagonists demonstrate better in vivo tumour uptake than radiolabelled GRPR agonists

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GRPR expression in prostate cancer.
Figure 2: GRPR expression in urinary bladder cancer.
Figure 3: Targeting cancer with nonradioactive GRPR antagonists.
Figure 4: Targeted radiotherapy with radiolabelled bombesin analogues.
Figure 5: Development of a bombesin-related radioligand.
Figure 6: Targeted cytotoxic therapy with a cytotoxic bombesin agonist.

Similar content being viewed by others

References

  1. Mottet, N. et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 59, 572–583 (2011).

    Article  PubMed  Google Scholar 

  2. Bastian, P. J. et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol. 61, 1096–1106 (2012).

    Article  PubMed  Google Scholar 

  3. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 59, 61–71 (2011).

    Article  PubMed  Google Scholar 

  4. Yap, T. A., Zivi, A., Omlin, A. & de Bono, J. S. The changing therapeutic landscape of castration-resistant prostate cancer. Nat. Rev. Clin. Oncol. 8, 597–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  6. Huggins, C., Stevens, R. E. Jr & Hodges, C. V. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 43, 209–223 (1941).

    Article  CAS  Google Scholar 

  7. Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Corcoran, N. M. & Gleave, M. E. Targeted therapy in prostate cancer. Histopathology 60, 216–231 (2012).

    Article  PubMed  Google Scholar 

  9. Reubi, J. C. & Maecke, H. R. Peptide-based probes for cancer imaging. J. Nucl. Med. 49, 1735–1738 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Imhof, A. et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J. Clin. Oncol. 29, 2416–2423 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Kwekkeboom, D. J. et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol. 26, 2124–2130 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Ambrosini, V., Fani, M., Fanti, S., Forrer, F. & Maecke, H. R. Radiopeptide imaging and therapy in Europe. J. Nucl. Med. 52 (Suppl. 2), 42S–55S (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Anastasi, A., Erspamer, V. & Bucci, M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27, 166–167 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Erspamer, V., Erpamer, G. F. & Inselvini, M. Some pharmacological actions of alytesin and bombesin. J. Pharm. Pharmacol. 22, 875–876 (1970).

    Article  CAS  PubMed  Google Scholar 

  15. Erspamer, V. Discovery, isolation, and characterization of bombesin-like peptides. Ann. NY Acad. Sci. 547, 3–9 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Jensen, R. T., Battey, J. F., Spindel, E. R. & Benya, R. V. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev. 60, 1–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. McDonald, T. J. et al. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem. Biophys. Res. Commun. 90, 227–233 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Minamino, N., Kangawa, K. & Matsuo, H. Neuromedin C: a bombesin-like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 119, 14–20 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Jensen, R. T. & Moody, T. W. in Handbook of Biologically Active Peptides (ed. Kastin, A. J.) 429–434 (Elsevier, Amsterdam, 2006).

    Book  Google Scholar 

  20. Gorbulev, V., Akhundova, A., Buchner, H. & Fahrenholz, F. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy. Eur. J. Biochem. 208, 405–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Fathi, Z. et al. BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J. Biol. Chem. 268, 5979–5984 (1993).

    CAS  PubMed  Google Scholar 

  22. Fleischmann, A., Waser, B. & Reubi, J. C. High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications. Endocr. Relat. Cancer 16, 623–633 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Reubi, J. C., Wenger, S., Schmuckli-Maurer, J., Schaer, J. C. & Gugger, M. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6–14). Clin. Cancer Res. 8, 1139–1146 (2002).

    CAS  PubMed  Google Scholar 

  24. Sun, B., Halmos, G., Schally, A. V., Wang, X. & Martinez, M. Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 42, 295–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Markwalder, R. & Reubi, J. C. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 59, 1152–1159 (1999).

    CAS  PubMed  Google Scholar 

  26. Weber, H. C. Regulation and signaling of human bombesin receptors and their biological effects. Curr. Opin. Endocrinol. Diabetes Obes. 16, 66–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Bartholdi, M. F. et al. In situ hybridization for gastrin-releasing peptide receptor (GRP receptor) expression in prostatic carcinoma. Int. J. Cancer 79, 82–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Ananias, H. J., van den Heuvel, M. C., Helfrich, W. & de Jong, I. J. Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 69, 1101–1108 (2009).

    Article  PubMed  Google Scholar 

  29. Beer, M. et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate 72, 318–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Swanson, G. P., Thompson, I. M. & Basler, J. Current status of lymph node-positive prostate cancer: incidence and predictors of outcome. Cancer 107, 439–450 (2006).

    Article  PubMed  Google Scholar 

  31. Giannarini, G., Petralia, G. & Thoeny, H. C. Potential and limitations of diffusion-weighted magnetic resonance imaging in kidney, prostate, and bladder cancer including pelvic lymph node staging: a critical analysis of the literature. Eur. Urol. 61, 326–340 (2012).

    Article  PubMed  Google Scholar 

  32. Gornik, G. et al. Evaluation of the GRPR radioantagonist Cu-64-CB-TE2A-AR-06 in mice and men [abstract]. J. Nucl. Med. 52 (Suppl. 1), 7P (2011).

    Google Scholar 

  33. Scopinaro, F. et al. 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur. J. Nucl. Med. Mol. Imaging 30, 1378–1382 (2003).

    Article  PubMed  Google Scholar 

  34. de Visser, M. et al. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J. Nucl. Med. 48, 88–93 (2007).

    CAS  PubMed  Google Scholar 

  35. Schroeder, R. P. et al. Androgen-regulated gastrin-releasing peptide receptor expression in androgen-dependent human prostate tumor xenografts. Int. J. Cancer 126, 2826–2834 (2010).

    CAS  PubMed  Google Scholar 

  36. Gugger, M. & Reubi, J. C. Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am. J. Pathol. 155, 2067–2076 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fleischmann, A., Waser, B. & Reubi, J. C. Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms. Cell Oncol. 29, 421–433 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bjenning, C., Farrell, A. P. & Holmgren, S. Bombesin-like immunoreactivity in skates and the in vitro effect of bombesin on coronary vessels from the longnose skate, Raja rhina. Regul. Pept. 35, 207–219 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Clive, S., Jodrell, D. & Webb, D. Gastrin-releasing peptide is a potent vasodilator in humans. Clin. Pharmacol. Ther. 69, 252–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Heuser, M. et al. Expression of gastrin releasing peptide receptor in renal cell carcinomas: a potential function for the regulation of neoangiogenesis and microvascular perfusion. J. Urol. 173, 2154–2159 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Luu, T. N. et al. Different responses of the human gastroepiploic and internal mammary arteries to vasoactive peptides. Am. J. Physiol. 264, H583–H587 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Bunnett, N. in Gut Peptides: Comprehensive Endocrinology (eds Walsh, J. H. & Dockray, G. J.) 423–445 (Raven Press Ltd, New York, 1994).

    Google Scholar 

  43. Jensen, J. A., Carroll, R. E. & Benya, R. V. The case for gastrin-releasing peptide acting as a morphogen when it and its receptor are aberrantly expressed in cancer. Peptides 22, 689–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, J. S., McKinnis, V. S. & White, S. R. Migration of guinea pig airway epithelial cells in response to bombesin analogues. Am. J. Respir. Cell. Mol. Biol. 16, 259–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Yule, K. A. & White, S. R. Migration of 3T3 and lung fibroblasts in response to calcitonin gene-related peptide and bombesin. Exp. Lung Res. 25, 261–273 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Bajo, A. M., Schally, A. V., Groot, K. & Szepeshazi, K. Bombesin antagonists inhibit proangiogenic factors in human experimental breast cancers. Br. J. Cancer 90, 245–252 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levine, L., Licci, J. A. 3rd, Townsend, C. M. Jr & Hellmich, M. R. Expression of gastrin-releasing peptide receptors in endometrial cancer. J. Am. Coll. Surg. 196, 898–904 (2003).

    Article  PubMed  Google Scholar 

  48. Levine, L. et al. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res. 63, 3495–3502 (2003).

    CAS  PubMed  Google Scholar 

  49. Reubi, J. C., Fleischmann, A., Waser, B. & Rehmann, R. Concomitant vascular GRP-receptor and VEGF-receptor expression in human tumors: molecular basis for dual targeting of tumoral vasculature. Peptides 32, 1457–1462 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Chevalier, S. et al. Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol. Cell. Endocrinol. 189, 169–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Narazaki, M. & Tosato, G. Targeting coagulation to the tumor microvasculature: perspectives and therapeutic implications from preclinical studies. J. Natl Cancer Inst. 97, 705–707 (2005).

    Article  PubMed  Google Scholar 

  52. Stenzl, A. et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur. Urol. 59, 1009–1018 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Moody, T. W. et al. GRP receptors are present in non small cell lung cancer cells. J. Cell. Biochem. Suppl. 24, 247–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Carroll, R. E., Ostrovskiy, D., Lee, S., Danilkovich, A. & Benya, R. V. Characterization of gastrin-releasing peptide and its receptor aberrantly expressed by human colon cancer cell lines. Mol. Pharmacol. 58, 601–607 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Fleischmann, A., Waser, B., Gebbers, J. O. & Reubi, J. C. Gastrin-releasing peptide receptors in normal and neoplastic human uterus: involvement of multiple tissue compartments. J. Clin. Endocrinol. Metab. 90, 4722–4729 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Moody, T. W., Carney, D. N., Cuttitta, F., Quattrocchi, K. & Minna, J. D. High affinity receptors for bombesin/GRP-like peptides on human small cell lung cancer. Life Sci. 37, 105–113 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Pansky, A. et al. Gastrin releasing peptide-preferring bombesin receptors mediate growth of human renal cell carcinoma. J. Am. Soc. Nephrol. 11, 1409–1418 (2000).

    CAS  PubMed  Google Scholar 

  58. Reubi, J. C., Korner, M., Waser, B., Mazzucchelli, L. & Guillou, L. High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur. J. Nucl. Med. Mol. Imaging 31, 803–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Fleischmann, A., Laderach, U., Friess, H., Buechler, M. W. & Reubi, J. C. Bombesin receptors in distinct tissue compartments of human pancreatic diseases. Lab. Invest. 80, 1807–1817 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Hohla, F. & Schally, A. V. Targeting gastrin releasing peptide receptors: new options for the therapy and diagnosis of cancer. Cell Cycle 9, 1738–1741 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Schally, A. V. et al. Hypothalamic hormones and cancer. Front. Neuroendocrinol. 22, 248–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Schally, A. V., Comaru-Schally, A. M. & Redding, T. W. Antitumor effects of analogs of hypothalamic hormones in endocrine-dependent cancers. Proc. Soc. Exp. Biol. Med. 175, 259–281 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Bajo, A. M. et al. Bombesin antagonists inhibit growth of MDA-MB-435 estrogen-independent breast cancers and decrease the expression of the ErbB-2/HER-2 oncoprotein and c-jun and c-fos oncogenes. Proc. Natl Acad. Sci. USA 99, 3836–3841 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Coy, D. H. et al. Probing peptide backbone function in bombesin. A reduced peptide bond analogue with potent and specific receptor antagonist activity. J. Biol. Chem. 263, 5056–5060 (1988).

    CAS  PubMed  Google Scholar 

  65. Schwartsmann, G. et al. A phase I trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Invest. New Drugs 24, 403–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Shokeen, M. & Anderson, C. J. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc. Chem. Res. 42, 832–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wild, D. et al. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res. 71, 1009–1018 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Morgenstern, A. et al. Synthesis of 213Bi-DOTATOC for peptide receptor alpha-therapy of GEP-NET patients refractory to beta therapy. J. Nucl. Med. 53, 455 (2012).

    Google Scholar 

  69. Maecke, H. R. & Reubi, J. C. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J. Nucl. Med. 52, 841–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Baidoo, K. E. et al. Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug. Chem. 9, 218–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, K. S. et al. A new high affinity technetium-99m-bombesin analogue with low abdominal accumulation. Bioconjug. Chem. 16, 43–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Nock, B. et al. [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur. J. Nucl. Med. Mol. Imaging 30, 247–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Van de Wiele, C. et al. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur. J. Nucl. Med. 27, 1694–1699 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Van de Wiele, C. et al. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J. Nucl. Med. 49, 260–264 (2008).

    Article  PubMed  Google Scholar 

  75. Van de Wiele, C. et al. Biodistribution and dosimetry of (99m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J. Nucl. Med. 42, 1722–1727 (2001).

    CAS  PubMed  Google Scholar 

  76. De Vincentis, G. et al. Role of 99mTc-bombesin scan in diagnosis and staging of prostate cancer. Cancer Biother. Radiopharm. 19, 81–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Dijkgraaf, I. et al. PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog. J. Nucl. Med. 53, 947–952 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, X. et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J. Nucl. Med. 47, 492–501 (2006).

    CAS  PubMed  Google Scholar 

  79. Hoffman, T. J. & Smith, C. J. True radiotracers: Cu-64 targeting vectors based upon bombesin peptide. Nucl. Med. Biol. 36, 579–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, X. et al. microPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J. Nucl. Med. 45, 1390–1397 (2004).

    CAS  PubMed  Google Scholar 

  81. Garrison, J. C. et al. In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J. Nucl. Med. 48, 1327–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Lears, K. A. et al. In vitro and in vivo evaluation of 64Cu-labeled SarAr-bombesin analogs in gastrin-releasing peptide receptor-expressing prostate cancer. J. Nucl. Med. 52, 470–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, H. et al. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res. 64, 6707–6715 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Dimitrakopoulou-Strauss, A. et al. 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparison with 18F-FDG. J. Nucl. Med. 48, 1245–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Lantry, L. E. et al. 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J. Nucl. Med. 47, 1144–1152 (2006).

    CAS  PubMed  Google Scholar 

  86. Waser, B., Eltschinger, V., Linder, K., Nunn, A. & Reubi, J. C. Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer 177Lu-AMBA. Eur. J. Nucl. Med. Mol. Imaging 34, 95–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Maddalena, M. E. et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J. Nucl. Med. 50, 2017–2024 (2009).

    Article  PubMed  Google Scholar 

  88. Bodei, L. et al. 177Lu-AMBA Bombesin analogue in hormone refractory prostate cancer patients: a phase I escalation study with single-cycle administrations. Eur. J. Nucl. Med. Mol. Imaging 34, S221 (2007).

    Google Scholar 

  89. Ginj, M. et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl Acad. Sci. USA 103, 16436–16441 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cescato, R. et al. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J. Nucl. Med. 49, 318–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Mansi, R. et al. Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin. Cancer Res. 15, 5240–5249 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Mansi, R. et al. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur. J. Nucl. Med. Mol. Imaging 38, 97–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Minn, H. et al. Detection of prostate cancer using 68Ga-labelled bombesin analogue BAY 86–7548 in patients undergoing radical prostatectomy [abstract OP507]. Eur. J. Nucl. Med. Mol. Imaging 39, S155–S303 (2012).

    Article  Google Scholar 

  94. Abiraj, K. et al. Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors. J. Nucl. Med. 52, 1970–1978 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Mu, L. et al. In vitro and in vivo characterization of novel 18F-labeled bombesin analogues for targeting GRPR-positive tumors. Bioconjug. Chem. 21, 1864–1871 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Honer, M. et al. 18F-labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J. Nucl. Med. 52, 270–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Li, Z. B., Wu, Z., Chen, K., Ryu, E. K. & Chen, X. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J. Nucl. Med. 49, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Schally, A. V., Engel, J. B., Emons, G., Block, N. L. & Pinski, J. Use of analogs of peptide hormones conjugated to cytotoxic radicals for chemotherapy targeted to receptors on tumors. Curr. Drug Deliv. 8, 11–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Kiaris, H. et al. Targeted cytotoxic analogue of bombesin/gastrin-releasing peptide inhibits the growth of H-69 human small-cell lung carcinoma in nude mice. Br. J. Cancer 81, 966–971 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stangelberger, A. et al. Targeted chemotherapy with cytotoxic bombesin analogue AN-215 inhibits growth of experimental human prostate cancers. Int. J. Cancer 118, 222–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Safavy, A., Raisch, K. P., Khazaeli, M. B., Buchsbaum, D. J. & Bonner, J. A. Paclitaxel derivatives for targeted therapy of cancer: toward the development of smart taxanes. J. Med. Chem. 42, 4919–4924 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Engel, J. B., Schally, A. V., Dietl, J., Rieger, L. & Honig, A. Targeted therapy of breast and gynecological cancers with cytotoxic analogues of peptide hormones. Mol. Pharm. 4, 652–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Moody, T. W. et al. Development of high affinity camptothecin-bombesin conjugates that have targeted cytotoxicity for bombesin receptor-containing tumor cells. J. Biol. Chem. 279, 23580–23589 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Moody, T. W. et al. In vitro and in vivo antitumor effects of cytotoxic camptothecin-bombesin conjugates are mediated by specific interaction with cellular bombesin receptors. J. Pharmacol. Exp. Ther. 318, 1265–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Engel, J. B. et al. Effective inhibition of experimental human ovarian cancers with a targeted cytotoxic bombesin analogue AN-215. Clin. Cancer Res. 11, 2408–2415 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Myreille Kuonen, Berne, for her excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Contributions

R. Mansi, H. R. Mäcke and J. C. Reubi researched data for the article. A. Fleischmann, H. R. Mäcke and J. C. Reubi made substantial contribution to discussion of content. R. Mansi and J. C. Reubi wrote the article. H. R. Mäcke and J. C. Reubi reviewed the manuscript before submission.

Corresponding author

Correspondence to Jean C. Reubi.

Ethics declarations

Competing interests

R. Mansi, H. R. Mäcke and J. C. Reubi have received grant/research support (inc. clinical trials) from and are patent holders/applicants for Bayer. A. Fleischmann declares no competing interests.

Supplementary information

Supplementary Table 1

Amino acid sequences of bombesin-like peptides and their analogues (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansi, R., Fleischmann, A., Mäcke, H. et al. Targeting GRPR in urological cancers—from basic research to clinical application. Nat Rev Urol 10, 235–244 (2013). https://doi.org/10.1038/nrurol.2013.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.42

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer