Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular imaging in rheumatic diseases

Key Points

  • Cellular imaging of immune cells such as T cells, B cells and antigen-presenting cells has improved our understanding of immune homeostasis, immune responses and autoimmune diseases

  • Cellular interactions underlie multiple stages of an immune response, including its initiation, maintenance, regulation and termination

  • The details of how, where and when cells migrate and interact during the multiple phases of immune responses remain unclear; cellular imaging techniques can elucidate some of these aspects

  • The real-time visualization and assessment of cellular interactions and functions in vivo has been made possible by new developments in cellular imaging techniques

  • A better understanding of the cell–cell interactions underlying immune responses will contribute to improvements in rheumatoid arthritis therapy

Abstract

Developments in cellular imaging now enable the real-time visualization of the choreographed sequence of events that underlie the development of immune responses in vivo. The previously unappreciated dynamics and anatomical context of cellular interactions, revealed in these studies, can have profound consequences for the 'decision' by the immune system to induce immunological priming versus immunological tolerance. Importantly, dysregulation of this balance can result in autoimmune diseases such as rheumatoid arthritis (RA). By further developing our understanding of how, where and when cells interact during immune responses, we can further dissect these events to assess how cell interactions might be aberrant in autoimmunity. A better knowledge of the mechanisms involved in cellular interactions by means of cellular imaging can help the development and targeting of therapies to particular disease stages and tissues in patients with RA in efforts to restore immune homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of rheumatoid arthritis.
Figure 2: Challenges in tissue imaging.

Similar content being viewed by others

References

  1. Benson, R. A., Brewer, J. M. & Platt, A. M. Mechanisms of autoimmunity in human diseases: a critical review of current dogma. Curr. Opin. Rheumatol. 26, 197–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Kollias, G. et al. Animal models for arthritis: innovative tools for prevention and treatment. Ann. Rheum. Dis. 70, 1357–1362 (2011).

    Article  PubMed  Google Scholar 

  4. Vincent, T. L., Williams, R. O., Maciewicz, R., Silman, A. & Garside, P. Mapping pathogenesis of arthritis through small animal models. Rheumatology (Oxford) 51, 1931–1941 (2012).

    Article  Google Scholar 

  5. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2, 872–880 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Squirrell, J. M., Wokosin, D. L., White, J. G. & Bavister, B. D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17, 763–767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kobezda, T., Ghassemi-Nejad, S., Glant, T. T. & Mikecz, K. In vivo two-photon imaging of T cell motility in joint-draining lymph nodes in a mouse model of rheumatoid arthritis. Cell. Immunol. 278, 158–165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Byrne, R. et al. A dynamic real time in vivo and static ex vivo analysis of granulomonocytic cell migration in the collagen-induced arthritis model. PLoS ONE 7, e35194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kikuta, J. et al. Dynamic visualization of RANKL and TH17-mediated osteoclast function. J. Clin. Invest. 123, 866–873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Angyal, A. et al. Development of proteoglycan-induced arthritis depends on T cell-supported autoantibody production, but does not involve significant influx of T cells into the joints. Arthritis Res. Ther. 12, R44 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  13. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Rankin, A. L. et al. CD4+ T cells recognizing a single self-peptide expressed by APCs induce spontaneous autoimmune arthritis. J. Immunol. 180, 833–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Atsumi, T. et al. A point mutation of Tyr-759 in interleukin 6 family cytokine receptor subunit gp130 causes autoimmune arthritis. J. Exp. Med. 196, 979–990 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Morris, G. P. & Allen, P. M. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat. Immunol. 13, 121–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Halkias, J. et al. Opposing chemokine gradients control human thymocyte migration in situ. J. Clin. Invest. 123, 2131–2142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ladi, E., Herzmark, P. & Robey, E. In situ imaging of the mouse thymus using 2-photon microscopy. J. Vis. Exp. 11, 652 (2008).

    Google Scholar 

  23. Melichar, H. J., Ross, J. O., Herzmark, P., Hogquist, K. A. & Robey, E. A. Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Sci. Signal. 6, ra92 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ross, J. O. et al. Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. Proc. Natl Acad. Sci. USA 111, E2550–E2558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, e160 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bousso, P. & Robey, E. A. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21, 349–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Cooles, F. A., Isaacs, J. D. & Anderson, A. E. TREG cells in rheumatoid arthritis: an update. Curr. Rheumatol. Rep. 15, 352 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Notley, C. A. & Ehrenstein, M. R. The yin and yang of regulatory T cells and inflammation in RA. Nat. Rev. Rheumatol. 6, 572–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Roozendaal, R., Mebius, R. E. & Kraal, G. The conduit system of the lymph node. Int. Immunol. 20, 1483–1487 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Bajénoff, M. Stromal cells control soluble material and cellular transport in lymph nodes. Front. Immunol. 3, 304 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Girard, J. P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Bajénoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular TH cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marangoni, F. et al. The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 38, 237–249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zinselmeyer, B. H. et al. In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J. Exp. Med. 201, 1815–1823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith, K. M., McAskill, F. & Garside, P. Orally tolerized T cells are only able to enter B cell follicles following challenge with antigen in adjuvant, but they remain unable to provide B cell help. J. Immunol. 168, 4318–4325 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Deenick, E. K. et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baumjohann, D. et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hauser, A. E., Shlomchik, M. J. & Haberman, A. M. In vivo imaging studies shed light on germinal-centre development. Nat. Rev. Immunol. 7, 499–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Cyster, J. G. Shining a light on germinal center B cells. Cell 143, 503–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 10, 58–65 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Platt, A. M. et al. Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J. Immunol. 185, 1558–1567 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. van Baarsen, L. G. et al. The cellular composition of lymph nodes in the earliest phase of inflammatory arthritis. Ann. Rheum. Dis. 72, 1420–1424 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. de Hair, M. J. et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol. 66, 513–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yin, Y., Li, Y. & Mariuzza, R. A. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol. Rev. 250, 32–48 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Schubert, D. A. et al. Self-reactive human CD4 T cell clones form unusual immunological synapses. J. Exp. Med. 209, 335–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, J. L. & Ng, L. G. Peeking into the secret life of neutrophils. Immunol. Res. 53, 168–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Eyles, J. L. et al. A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193–5201 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, B., Zinselmeyer, B. H., McDole, J. R., Gieselman, P. A. & Miller, M. J. Non-invasive imaging of leukocyte homing and migration in vivo. J. Vis. Exp. 46, 2062 (2010).

    Google Scholar 

  66. Wang, B. et al. In vivo imaging implicates CCR2+ monocytes as regulators of neutrophil recruitment during arthritis. Cell. Immunol. 278, 103–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams, M. R., Azcutia, V., Newton, G., Alcaide, P. & Luscinskas, F. W. Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 32, 461–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    Article  PubMed  CAS  Google Scholar 

  69. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Sadik, C. D., Kim, N. D. & Luster, A. D. Neutrophils cascading their way to inflammation. Trends Immunol. 32, 452–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sadik, C. D., Kim, N. D., Iwakura, Y. & Luster, A. D. Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling. Proc. Natl Acad. Sci. USA 109, E3177–E3185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, M. et al. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J. Exp. Med. 203, 837–842 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, N. D., Chou, R. C., Seung, E., Tager, A. M. & Luster, A. D. A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J. Exp. Med. 203, 829–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaplan, M. J. & Radic, M. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 189, 2689–2695 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Yipp, B. G. & Kubes, P. NETosis: how vital is it? Blood 122, 2784–2794 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Pratesi, F. et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheum. Dis. 73, 1414–1422 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Dwivedi, N. & Radic, M. Citrullination of autoantigens implicates NETosis in the induction of autoimmunity. Ann. Rheum. Dis. 73, 483–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Tanaka, K. et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS ONE 9, e111888 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bankhurst, A. D., Husby, G. & Williams, R. C. Jr. Predominance of T cells in the lymphocytic infiltrates of synovial tissues in rheumatoid arthritis. Arthritis Rheum. 19, 555–562 (1976).

    Article  CAS  PubMed  Google Scholar 

  80. Firestein, G. S. & Zvaifler, N. J. How important are T cells in chronic rheumatoid synovitis? Arthritis Rheum. 33, 768–773 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Firestein, G. S. & Zvaifler, N. J. The role of T cells in rheumatoid arthritis. Ann. Rheum. Dis. 52, 765 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cope, A. P., Schulze-Koops, H. & Aringer, M. The central role of T cells in rheumatoid arthritis. Clin. Exp. Rheumatol. 25, S4–S11 (2007).

    CAS  PubMed  Google Scholar 

  83. Miossec, P. Dynamic interactions between T cells and dendritic cells and their derived cytokines/chemokines in the rheumatoid synovium. Arthritis Res. Ther. 10 (Suppl. 1), S2 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kobezda, T., Ghassemi-Nejad, S., Mikecz, K., Glant, T. T. & Szekanecz, Z. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat. Rev. Rheumatol. 10, 160–170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun-Wada, G. H., Tabata, H., Kawamura, N., Aoyama, M. & Wada, Y. Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J. Cell Sci. 122, 2504–2513 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Lister, T., Wright, P. A. & Chappell, P. H. Optical properties of human skin. J. Biomed. Opt. 17, 90901 (2012).

    PubMed  Google Scholar 

  87. Maeda, A. & DaCosta, R. S. Optimization of the dorsal skinfold window chamber model and multi-parametric characterization of tumor-associated vasculature. IntraVital 3, e27935 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gibson, V. B. et al. A novel method to allow noninvasive, longitudinal imaging of the murine immune system in vivo. Blood 119, 2545–2551 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Dunbar, K. B. & Canto, M. I. Confocal endomicroscopy. Tech. Gastrointest. Endosc. 12, 90–99 (2010).

    Article  Google Scholar 

  90. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Moreau, H. D. et al. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity 37, 351–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Chtanova, T. et al. Real-time interactive two-photon photoconversion of recirculating lymphocytes for discontinuous cell tracking in live adult mice. J. Biophotonics 7, 425–433 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ji, N., Sato, T. R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl Acad. Sci. USA 109, 22–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Sevick-Muraca, E. M. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu. Rev. Med. 63, 217–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Rueden, C. T., Conklin, M. W., Provenzano, P. P., Keely, P. J. & Eliceiri, K. W. Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 4077–4080 (2009).

    PubMed Central  Google Scholar 

  100. Alexander, S., Weigelin, B., Winkler, F. & Friedl, P. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell Biol. 25, 659–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Cicchi, R. & Pavone, F. S. Non-linear fluorescence lifetime imaging of biological tissues. Anal. Bioanal Chem. 400, 2687–2697 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Konda, V. J. et al. An international, multi-center trial on needle-based confocal laser endomicroscopy (nCLE): results from the IN vivo CLE Study in the Pancreas with Endosonography of Cystic Tumors (INSPECT) [abstract Mo1204]. Gastroenterology 142, S620–S621 (2012).

    Article  Google Scholar 

  103. Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M. & Germain, R. N. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207, 2793–2798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moran, A. E. et al. T cell receptor signal strength in TREG and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R. M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Madan, R. et al. Nonredundant roles for B cell-derived IL-10 in immune counter-regulation. J. Immunol. 183, 2312–2320 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Haegerling, R., Pollmann, C., Kremer, L., Andresen, V. & Kiefer, F. Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse. Biochem. Soc. Trans. 39, 1674–1681 (2011).

    Article  CAS  Google Scholar 

  112. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tomura, M. et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 120, 883–893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bromley, S. K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A. D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Weissman, T. A., Sanes, J. R., Lichtman, J. W. & Livet, J. Generating and imaging multicolor Brainbow mice. Cold Spring Harb. Protoc. 2011, 763–769 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Arthritis Research UK for funding their research, and the Rheumatoid Arthritis pathogenesis Centre of Excellence (RACE) for support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article and made substantial contributions to discussion of content, writing and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Paul Garside.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benson, R., McInnes, I., Brewer, J. et al. Cellular imaging in rheumatic diseases. Nat Rev Rheumatol 11, 357–367 (2015). https://doi.org/10.1038/nrrheum.2015.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing