Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mesenchymal stem cell treatments in rheumatology—a glass half full?

Abstract

Mesenchymal stem cells (MSCs) represent a heterogeneous progenitor cell population derived from various sources, including bone marrow, placental and adipose tissues. These cell populations are being extensively investigated for their regenerative, immunomodulatory and tissue-protective properties, and the therapeutic potential of MSCs is officially being tested in patients suffering from ischaemic, inflammatory, autoimmune and degenerative disorders. Unofficially, hundreds of centres worldwide already offer MSCs as a 'miracle' panacea treatment for almost every known human disease. Data from in vitro and animal models suggest that MSCs administered either locally or systemically are able to home to stressed tissue and indeed deliver a protective effect via predominately paracrine factors. Furthermore, dozens of published uncontrolled clinical trials have demonstrated strikingly positive therapeutic effects of MSCs with little acute toxicity; however, no prospective controlled trials have yet confirmed these findings, with the exception of one randomized controlled trial in renal transplantation. Thus, large prospective controlled trials are urgently needed to better understand MSC-based therapies and define their potential utility in the treatment of rheumatic diseases. Herein, I provide my opinions regarding the progress of MSC therapies to date and highlight issues that need to be addressed in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of MSCs and immune cells demonstrated in vitro.
Figure 2: The rigorous process of GMP.

Similar content being viewed by others

References

  1. Friedenstein, A. J. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2, 83–92 (1974).

    CAS  PubMed  Google Scholar 

  2. Tan, J. et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307, 1169–1177 (2012).

    Article  CAS  Google Scholar 

  3. Allison, M. Genzyme backs Osiris, despite Prochymal flop. Nat. Biotechnol. 27, 966–967 (2009).

    Article  CAS  Google Scholar 

  4. Bianco, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35–42 (2013).

    Article  CAS  Google Scholar 

  5. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    Article  CAS  Google Scholar 

  6. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  Google Scholar 

  7. Horwitz, E. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7, 393–395 (2005).

    Article  CAS  Google Scholar 

  8. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  9. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 99, 4391–4396 (2002).

    Article  CAS  Google Scholar 

  10. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  11. Frantz, S. Embryonic stem cell pioneer Geron exits field, cuts losses. Nat. Biotechnol. 30, 12–13 (2012).

    Article  CAS  Google Scholar 

  12. Barde, Y. Caution urged in trial of stem cells to treat spinal-cord injury. Nature 458, 29 (2009).

    Article  CAS  Google Scholar 

  13. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S. & Caplan, A. I. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 16, 557–564 (1995).

    CAS  PubMed  Google Scholar 

  14. Koç, O. N. et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 18, 307–316 (2000).

    Article  Google Scholar 

  15. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E. & Ringdén, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57, 11–20 (2003).

    Article  CAS  Google Scholar 

  16. Di Nicola, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).

    Article  CAS  Google Scholar 

  17. Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48 (2002).

    Article  Google Scholar 

  18. Le Blanc, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439–1441 (2004).

    Article  Google Scholar 

  19. Tyndall, A. & Uccelli, A. Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant. 43, 821–828 (2009).

    Article  CAS  Google Scholar 

  20. Logan, G. J. et al. HeLa cells cocultured with peripheral blood lymphocytes acquire an immuno-inhibitory phenotype through up-regulation of indoleamine 2,3-dioxygenase activity. Immunology 105, 478–487 (2002).

    Article  CAS  Google Scholar 

  21. Bocelli-Tyndall, C. et al. Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells. J. Cell. Physiol. 209, 732–734 (2006).

    Article  CAS  Google Scholar 

  22. Le Blanc, K. et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand. J. Immunol. 60, 307–315 (2004).

    Article  CAS  Google Scholar 

  23. Traggiai, E. et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26, 562–569 (2012).

    Article  Google Scholar 

  24. Djouad, F. et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum. 52, 1595–1603 (2005).

    Article  CAS  Google Scholar 

  25. Sajic. M. et al. Mesenchymal stem cells lack efficacy in the treatment of experimental autoimmune neuritis despite in vitro inhibition of T-cell proliferation. PLoS ONE 7, e30708 (2012).

    Article  CAS  Google Scholar 

  26. Lee, R. H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    Article  CAS  Google Scholar 

  27. Dwyer, R. M. et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin. Cancer Res. 13, 5020–5027 (2007).

    Article  CAS  Google Scholar 

  28. Gheisari, Y. et al. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury. Stem Cells Dev. 21, 2969–2980 (2012).

    Article  CAS  Google Scholar 

  29. von Bahr, L. et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30, 1575–1578 (2012).

    Article  CAS  Google Scholar 

  30. Bocelli-Tyndall, C. et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology (Oxford) 46, 403–408 (2006).

    Article  Google Scholar 

  31. Larghero, J. et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann. Rheum. Dis. 67, 443–449 (2008).

    Article  CAS  Google Scholar 

  32. Wang, D. et al. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years experience. Cell Transplant. http://dx.doi.org/10.3727/096368912X658719.

  33. Filardo, G. et al. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg. Sports Traumatol. Arthrosc. 21, 1717–1729 (2013).

    Article  Google Scholar 

  34. Koh, Y. G. & Choi, Y. J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 19, 902–907 (2012).

    Article  Google Scholar 

  35. van der Kraan, P. M. Stem cell therapy in osteoarthritis: a step too far? BioDrugs 27, 175–180 (2013).

    Article  Google Scholar 

  36. Thirabanjasak, D., Tantiwongse, K. & Thorner, P. S. Angiomyeloproliferative lesions following autologous stem cell therapy. J. Am. Soc. Nephrol. 21, 1218–1222 (2010).

    Article  Google Scholar 

  37. Cronstein, B. How does methotrexate suppress inflammation? Clin. Exp. Rheumatol. 28, S21–S23 (2010).

    CAS  PubMed  Google Scholar 

  38. Furusho, K. et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 2, 1055–1058 (1984).

    Article  CAS  Google Scholar 

  39. [No authors listed] Smoke and mirrors. Nature 496, 269–270 (2013).

  40. Cyranoski, D. Stem cells in Texas: cowboy culture. Nature 494, 166–168 (2013).

    Article  CAS  Google Scholar 

  41. European Medicines Agency. Public Statement. Concerns over unregulated medicinal products containing stem cells [online], (2010).

  42. Tarte, K. et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115, 1549–1553 (2010).

    Article  CAS  Google Scholar 

  43. European Medicines Agency. Committee for Advanced Therapies (CAT). Reflection paper on stem cell-based medicinal products [online], (2011).

  44. Martin, I. et al. The survey on cellular and engineered tissue therapies in Europe in 2010. Tissue Eng. Part A 18, 2268–2279 (2012).

    Article  CAS  Google Scholar 

  45. Nevskaya, T. et al. Autologous progenitor cell implantation as a novel therapeutic intervention for ischaemic digits in systemic sclerosis. Rheumatology (Oxford) 48, 61–64 (2009).

    Article  CAS  Google Scholar 

  46. Keyszer, G. et al. Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum. 63, 2540–2542 (2011).

    Article  Google Scholar 

  47. Guiducci, S. et al. Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis: a case report. Ann. Intern. Med. 153, 650–654 (2010).

    Article  Google Scholar 

  48. Carrion, F. et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19, 317–322 (2010).

    Article  CAS  Google Scholar 

  49. Liang, J. et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann. Rheum. Dis. 69, 1423–1429 (2010).

    Article  Google Scholar 

  50. Sun, L. et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 62, 2467–2475 (2010).

    Article  CAS  Google Scholar 

  51. Wang, D. et al. Efficacy of allogeneic mesenchymal stem cell transplantation in patients with drug-resistant polymyositis and dermatomyositis. Ann. Rheum. Dis. 70, 1285–1288 (2011).

    Article  Google Scholar 

  52. Shi, D. et al. Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clin. Rheumatol. 31, 841–846 (2012).

    Article  Google Scholar 

  53. Li, X., Wang, D., Liang, J., Zhang, H. & Sun, L. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 48, 544–550 (2012).

    Article  Google Scholar 

  54. Xu, J. et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood 120, 3142–3151 (2012).

    Article  CAS  Google Scholar 

  55. Liang, J. et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin. Rheumatol. 31, 157–161 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Tyndall.

Ethics declarations

Competing interests

A. Tyndall has received consultancy fees from the following companies: Athesys, Celgene, Celerix, and Tigenix.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyndall, A. Mesenchymal stem cell treatments in rheumatology—a glass half full?. Nat Rev Rheumatol 10, 117–124 (2014). https://doi.org/10.1038/nrrheum.2013.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing