Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain mechanisms of altered conscious states during epileptic seizures

Abstract

Impaired consciousness has long been considered the hallmark of epileptic seizures. Both generalized seizures and complex partial seizures are characterized by a multifaceted spectrum of altered conscious states, in terms of the general level of awareness and the subjective contents of consciousness. Complete loss of consciousness occurs when epileptic activity involves both cortical and subcortical structures, as in tonic–clonic seizures and absence seizures. Medial temporal lobe discharges can selectively impair experience in complex partial seizures (with affected responsiveness) and certain simple partial seizures (with unaffected responsiveness). Electrical stimulation of temporal lobe structures has been shown to evoke similar subjective experiences. Findings from neurophysiological and brain-imaging studies in epilepsy have now demonstrated that involvement of the bilateral thalamus and upper brainstem leads to selective impairment of frontoparietal association cortices and midline 'default mode' networks, which results in ictal loss of consciousness. The spread of epileptic discharges from the medial temporal lobe to the same subcortical structures can ultimately cause impairment in the level of consciousness in the late ictal and immediate postictal phase of complex partial seizures. This paper reviews novel insights into the brain mechanisms that underlie alterations of consciousness during epileptic seizures and the implications for clinical practice in terms of diagnosis and management.

Key Points

  • A patient's level of general awareness and subjective contents of consciousness can both be altered to some degree during epileptic seizures

  • Generalized seizures (tonic–clonic seizures and absence seizures) are characterized by complete loss of consciousness—that is, unresponsiveness in the absence of any ictal experience

  • Complex partial seizures (especially those with a medial temporal lobe focus) are associated with variable degrees of responsiveness and specific alterations in the subjective ictal experience

  • Neurophysiological and functional neuroimaging studies suggest that, in generalized and complex partial seizures, bilateral thalamus and upper brainstem involvement causes selective disruption of frontoparietal associative networks, which results in impaired consciousness

  • Ictal impairment of the general level of awareness seems related to transient disruption of frontoparietal and midline associative networks, which subserve 'default mode' brain function during the conscious resting state

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EEG patterns for different seizure types.
Figure 2: Patterns of brain activity associated with impaired consciousness during generalized tonic–clonic seizures.
Figure 3: Thalamic and cortical distribution of changes to generalized spike–wave discharges in 46 patients with idiopathic generalized epilepsy.
Figure 4: Patterns of brain activity associated with impaired consciousness during absence seizures.
Figure 5: Patterns of brain activity associated with impaired consciousness during complex partial seizures with medial temporal lobe focus.

Similar content being viewed by others

References

  1. Zeman, A. Consciousness. Brain 124, 1263–1289 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Laureys, S. (ed) The Boundaries of Consciousness: Neurobiology and Neuropathology (Amsterdam: Elsevier, 2005).

    Google Scholar 

  3. Laureys, S. & Tononi, G. (eds) The Neurology of Consciousness (Amsterdam: Elsevier, 2009).

    Google Scholar 

  4. Blumenfeld, H. Consciousness and epilepsy: why are patients with absence seizures absent? Prog. Brain Res. 150, 271–286 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Monaco, F., Mula, M. & Cavanna, A. E. Consciousness, epilepsy and emotional qualia. Epilepsy Behav. 7, 150–160 (2005).

    Article  PubMed  Google Scholar 

  6. Engel, J. & International League Against Epilepsy. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 42, 796–803 (2001).

    Article  PubMed  Google Scholar 

  7. Zappulla, R. A. Epilepsy and consciousness. Semin. Neurol. 17, 113–119 (2007).

    Article  Google Scholar 

  8. [No authors listed] Commission on Classification and Terminology of the International League Against Epilepsy Proposal for revised clinical and electroencephalographic classification of seizures. Epilepsia 22, 489–501 (1981).

  9. Gloor, P. Consciousness as a neurological concept in epileptology: a critical review. Epilepsia 27 (Suppl. 2), 14–26 (1986).

    Article  Google Scholar 

  10. Kalamangalam, G. P. Epilepsy and the physical basis of consciousness. Seizure 10, 484–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Johanson, M., Revonsuo, A., Chaplin, J. & Wedlund, J. E. Level and contents of consciousness in connection with partial epileptic seizures. Epilepsy Behav. 4, 279–285 (2003).

    Article  PubMed  Google Scholar 

  12. Johanson, M., Valli, K., Revonsuo, A., Chaplin, J. E. & Wedlund, J. E. Alterations in the contents of consciousness in partial epileptic seizures. Epilepsy Behav. 13, 366–371 (2008).

    Article  PubMed  Google Scholar 

  13. Johanson, M., Valli, K., Revonsuo, A. & Wedlund, J. E. Content analysis of subjective experiences in partial epileptic seizures. Epilepsy Behav. 12, 170–182 (2008).

    Article  PubMed  Google Scholar 

  14. Plum, F. & Posner, J. B. The Diagnosis of Stupor and Coma. 3rd edn (Davis, Philadelphia, 1980).

    Google Scholar 

  15. Blumenfeld, H. & Taylor, J. Why do seizures cause loss of consciousness? Neuroscientist 9, 1–10 (2003).

    Article  Google Scholar 

  16. Blumenfeld, H. Epilepsy and consciousness in The Neurology of Consciousness. (eds Laureys, S. & Tononi, G.) 247–260 (Elsevier, Amsterdam, 2009).

    Chapter  Google Scholar 

  17. Baars, B. J., Ramsøy, T. Z. & Laureys, S. Brain, conscious experience and the observing self. Trends Neurosci. 26, 671–675 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Laureys, S. & Boly, M. The changing spectrum of coma. Nat. Clin. Pract. Neurol. 4, 544–546 (2008).

    Article  PubMed  Google Scholar 

  19. Teasdale, G. & Jennett, B. Assessment of coma and impaired consciousness: a practical scale. Lancet 2, 81–84 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Alkire, M. T., Hudetz, A. G. & Tononi, G. Consciousness and anesthesia. Science 322, 876–880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Critchley, H. D. Neural mechanisms of autonomic, affective, and cognitive integration. J. Comp. Neurol. 493, 154–166 (2005).

    Article  PubMed  Google Scholar 

  22. Gloor, P. Experiential phenomena of temporal lobe epilepsy: facts and hypotheses. Brain 113, 1673–1694 (1990).

    Article  PubMed  Google Scholar 

  23. Cavanna, A. E. et al. Measuring the level and contents of consciousness during epileptic seizures: the Ictal Consciousness Inventory. Epilepsy Behav. 13, 184–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Cavanna, A. E. Seizures and consciousness in Behavioral Aspects of Epilepsy: Principles and Practice (eds Schachter, S. C. et al.) (Demos, New York, 2008).

    Google Scholar 

  25. Tononi, G. & Koch, C. The neural correlates of consciousness: an update. Ann. NY Acad. Sci. 1124, 239–261 (2008).

    Article  PubMed  Google Scholar 

  26. Engel, J. Jr, Kuhl, D. E. & Phelps, M. E. Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218, 64–66 (1982).

    Article  PubMed  Google Scholar 

  27. Andre, V., Henry, D. & Nehlig, A. Dynamic variations of local cerebral blood flow in maximal electroshock seizures in the rat. Epilepsia 43, 1120–1128 (2002).

    Article  PubMed  Google Scholar 

  28. McCown, T. J., Duncan, G. E., Johnson, K. B. & Breese, G. R. Metabolic and functional mapping of the neural network subserving inferior collicular seizure generalization. Brain Res. 701, 117–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ackermann, R. F., Engel, J. Jr & Baxter, L. Positron emission tomography and autoradiographic studies of glucose utilization following electroconvulsive seizures in humans and rats. Ann. NY Acad. Sci. 462, 263–269 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. McIntyre, D. C., Don, J. C. & Edson, N. Distribution of 14C-2-deoxyglucose after various forms and durations of status epilepticus induced by stimulation of a kindled amygdala focus in rats. Epilepsy Res. 10, 119–133 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, B. I. et al. HIPDM single photon emission computed tomography brain imaging in partial onset secondarily generalized tonic–clonic seizures. Epilepsia 28, 305–311 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Shin, W. C., Hong, S. B., Tae, W. S. & Kim, S. E. Ictal hyperperfusion patterns according to the progression of temporal lobe seizures. Neurology 58, 373–380 (2002).

    Article  PubMed  Google Scholar 

  33. Blumenfeld, H. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44 (Suppl. 2), 7–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Blumenfeld, H. et al. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain, in press (2009).

    Google Scholar 

  35. Blumenfeld, H., McNally, K. A., Ostroff, R. B. & Zubal, I. G. Targeted prefrontal cortical activation with bifrontal ECT. Psychiatry Res. 123, 165–170 (2003).

    Article  PubMed  Google Scholar 

  36. Blumenfeld, H. et al. Selective frontal, parietal, and temporal networks in generalized seizures. Neuroimage 19, 1556–1566 (2003).

    Article  PubMed  Google Scholar 

  37. McNally, K. A. & Blumenfeld, H. Focal network involvement in generalized seizures: new insights from electroconvulsive therapy. Epilepsy Behav. 5, 3–12 (2004).

    Article  PubMed  Google Scholar 

  38. Enev, M. et al. Imaging onset and propagation of ECT-induced seizures. Epilepsia 48, 238–244 (2007).

    Article  PubMed  Google Scholar 

  39. Hamandi, K. et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 31, 1700–1710 (2006).

    Article  PubMed  Google Scholar 

  40. Bell, W. L., Walczak, T. S., Shin, C. & Radtke, R. A. Painful generalised clonic and tonic–clonic seizures with retained consciousness. J. Neurol. Neurosurg. Psychiatr. 63, 792–795 (1997).

    Article  CAS  Google Scholar 

  41. Nogueira, R. G., Sheth, K. N., Duffy, F. H., Helmers, S. L. & Bromfield, E. B. Bilateral tonic–clonic seizures with temporal onset and preservation of consciousness. Neurology 70, 2188–2190 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Williams, D. A study of thalamic and cortical rhythms in petit mal. Brain 76, 50–69 (1953).

    Article  CAS  PubMed  Google Scholar 

  43. Blumenfeld, H. & McCormick, D. A. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci. 20, 5153–5162 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kostopoulos, G. K. Involvement of the thalamocortical system in epileptic loss of consciousness. Epilepsia 42, 13–19 (2001).

    Article  PubMed  Google Scholar 

  45. McCormick, D. A. & Contreras, D. On the cellular and network bases of epileptic seizures. Ann. Rev. Physiol. 63, 815–846 (2001).

    Article  CAS  Google Scholar 

  46. Blumenfeld, H. The thalamus and seizures. Arch. Neurol. 59, 135–137 (2002).

    Article  PubMed  Google Scholar 

  47. Crunelli, V. & Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Weir, B. The morphology of the spike–wave complex. Electroencephalogr. Clin. Neurophysiol. 19, 284–290 (1965).

    Article  CAS  PubMed  Google Scholar 

  49. Rodin, E. & Ancheta, O. Cerebral electrical fields during petit mal absences. Electroencephalogr. Clin. Neurophysiol. 66, 457–466 (1987).

    Article  CAS  PubMed  Google Scholar 

  50. Meeren, H. K., Pijn, J. P., Van Luijtelaar, E. L., Coenen, A. M. & Lopes da Silva, F. H. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J. Neurosci. 22, 1480–1495 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nersesyan, H., Hyder, F., Rothman, D. L. & Blumenfeld, H. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic–clonic seizures in WAG/Rij rats. J. Cereb. Blood Flow Metab. 24, 589–599 (2004).

    Article  PubMed  Google Scholar 

  52. Nersesyan, H., Herman, P., Erdogan, E., Hyder, F. & Blumenfeld, H. Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures. J. Cereb. Blood Flow Metab. 24, 1057–1068 (2004).

    Article  PubMed  Google Scholar 

  53. Blumenfeld, H. Cellular and network mechanisms of spike-wave seizures. Epilepsia 46 (Suppl. 9), 21–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Van Luijtelaar, G. & Sitnikova, E. Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci. Biobehav. Rev. 30, 983–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Engel, J. Jr, Lubens, P., Kuhl, D. E. & Phelps, M. E. Local cerebral metabolic rate for glucose during petit mal absences. Ann. Neurol. 17, 121–128 (1985).

    Article  PubMed  Google Scholar 

  56. Prevett, M. C., Duncan, J. S., Jones, T. Fish, D. R. & Brooks, D. J. Demonstration of thalamic activation during typical absence seizures using H215O and PET. Neurology 45, 1396–1402 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Yeni, S. N., Kabasakal, L., Yalçinkaya, C., Nişli, C. & Dervent, A. Ictal and interictal SPECT findings in childhood absence epilepsy. Seizure 9, 265–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Holmes, M. D., Brown, M. & Tucker, D. M. Are “generalized” seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia 45, 1568–1579 (2004).

    Article  PubMed  Google Scholar 

  59. Ochs, R. F. et al. Effect of generalized spike-and-wave discharge on glucose metabolism measured by positron emission tomography. Ann. Neurol. 21, 458–464 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Diehl, B., Knecht, S., Deppe, M., Young, C. & Stodieck, S. R. Cerebral hemodynamic response to generalized spike-wave discharges. Epilepsia 39, 1284–1289 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Mirsky, A. F. & Van Buren, J. M. On the nature of the 'absence' in centrencephalic epilepsy: a study of some behavioral, electroencephalographic, and autonomic factors. Electroencephalogr. Clin. Neurophysiol. 18, 334–348 (1965).

    Article  CAS  PubMed  Google Scholar 

  62. Archer, J. S., Abbott, D. F., Waites, A. B. & Jackson, G. D. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage 20, 1915–1922 (2003).

    Article  PubMed  Google Scholar 

  63. Salek-Haddadi, A. et al. Functional magnetic resonance imaging of human absence seizures. Ann. Neurol. 53, 663–667 (2003).

    Article  PubMed  Google Scholar 

  64. Aghakhani, Y. et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 127, 1127–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Gotman, J. et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl Acad. Sci. USA 102, 15236–15240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Labate, A., Briellmann, R. S., Abbott, D. F., Waites, A. B. & Jackson, G. D. Typical childhood absence seizures are associated with thalamic activation. Epileptic Disord. 7, 373–377 (2005).

    CAS  PubMed  Google Scholar 

  67. Laufs, H., Lengler, U., Hamandi, K., Kleinschmidt, A. & Krakow, K. Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47, 444–448 (2006).

    Article  PubMed  Google Scholar 

  68. Williamson, P. D. et al. Characteristics of medial temporal lobe epilepsy: II. Interictal and ictal scalp electroencephalography, neuropsychological testing, neuroimaging, surgical results, and pathology. Ann. Neurol. 34, 781–787 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Alvarez-Silva, S. et al. Epileptic consciousness: concept and meaning of aura. Epilepsy Behav. 8, 527–533 (2006).

    Article  PubMed  Google Scholar 

  70. Hogan, R. E. & Kaiboriboon, K. The “dreamy state”: John Hughlings-Jackson's ideas of epilepsy and consciousness. Am. J. Psychiatry 160, 1740–1747 (2003).

    Article  PubMed  Google Scholar 

  71. Fried, I. Auras and experiential responses arising in the temporal lobe. J. Neuropsychiatry Clin. Neurosci. 9, 420–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Vignal, J. P., Maillard, L., McGonigal, A. & Chauvel, P. The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 130, 88–99 (2007).

    Article  PubMed  Google Scholar 

  73. Hughes, J. R. The idiosyncratic aspects of the epilepsy of Fyodor Dostoevsky. Epilepsy Behav. 7, 531–538 (2005).

    Article  PubMed  Google Scholar 

  74. Penfield, W. The Mystery of the Mind: a Critical Study of Consciousness and the Human Brain (Princeton University Press, 1975).

    Google Scholar 

  75. Bancaud, J., Brunet-Bourgin, F., Chauvel, P. & Halgren, E. Anatomical origin of deja vu and vivid 'memories' in human temporal lobe epilepsy. Brain 117, 71–90 (1994).

    Article  PubMed  Google Scholar 

  76. Inoue, Y. & Mihara, T. Awareness and responsiveness during partial seizures. Epilepsia 39 (Suppl. 5), 7–10 (1998).

    Article  PubMed  Google Scholar 

  77. Lee, K. H. et al. Pathophysiology of altered consciousness during seizures: subtraction SPECT study. Neurology 59, 841–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Lux, S. et al. The localizing value of ictal consciousness and its constituent functions: a video-EEG study in patients with focal epilepsy. Brain 125, 2691–2698 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Norden, A. D. & Blumenfeld, H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 3, 219–231 (2002).

    Article  PubMed  Google Scholar 

  80. Mayanagi, Y., Watanabe, E. & Kaneko, Y. Mesial temporal lobe epilepsy: clinical features and seizure mechanism. Epilepsia 37 (Suppl. 3), 57–60 (1996).

    Article  PubMed  Google Scholar 

  81. Kaiboriboon, K., Bertrand, M. E., Osman, M. M. & Hogan, R. E. Quantitative analysis of cerebral blood flow patterns in mesial temporal lobe epilepsy using composite SISCOM. J. Nucl. Med. 46, 38–43 (2005).

    PubMed  Google Scholar 

  82. Tae, W. S. et al. Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT. Neuroimage 24, 101–110 (2005).

    Article  PubMed  Google Scholar 

  83. Kim, J. H. et al. Ictal hyperperfusion patterns in relation to ictal scalp EEG patterns in patients with unilateral hippocampal sclerosis: a SPECT study. Epilepsia 48, 270–277 (2007).

    Article  PubMed  Google Scholar 

  84. Van Paesschen, W., Dupont, P., Van Driel, G., Van Billoen, H. & Maes, A. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 126, 1103–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. McNally, K. A. et al. Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 46, 1450–1464 (2005).

    Article  PubMed  Google Scholar 

  86. Blumenfeld, H. et al. Positive and negative network correlations in temporal lobe epilepsy. Cereb. Cortex 14, 892–902 (2004).

    Article  PubMed  Google Scholar 

  87. Blumenfeld, H. et al. Ictal neocortical slowing in temporal lobe epilepsy. Neurology 63, 1015–1021 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Gur, R. C. et al. Sex differences in regional cerebral glucose metabolism during a resting state. Science 267, 528–531 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Binder, J. R. et al. Conceptual processing during the conscious resting state: a functional MRI study. J. Cogn. Neurosci. 11, 80–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gusnard, D. A. & Raichle, M. E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Mitchell, J. P., Heatherton, T. F. & Macrae, C. N. Distinct neural systems subserve person and object knowledge. Proc. Natl Acad. Sci. USA 99, 15238–15243 (2003).

    Article  CAS  Google Scholar 

  93. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

    Article  PubMed  Google Scholar 

  95. Cavanna, A. E. The precuneus and consciousness. CNS Spectrums 12, 545–552 (2007).

    Article  PubMed  Google Scholar 

  96. Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430 (2008).

    Article  PubMed  Google Scholar 

  97. Vogt, B. A. & Laureys, S. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog. Brain Res. 150, 205–217 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Raichle, M. E. & Snyder, A. Z. Intrinsic brain activity and consciousness, in The Neurology of Consciousness Ch. 7 (eds Laureys, S. & Tononi, G.) (Elsevier, Amsterdam, 2009).

    Google Scholar 

  99. Schridde, U. et al. Negative BOLD with large increases in neuronal activity. Cereb. Cortex 18, 1814–1827 (2008).

    Article  PubMed  Google Scholar 

  100. Englot, D. J. et al. Remote effects of focal hippocampal seizures on the rat neocortex. J. Neurosci. 28, 9066–9081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Hugh Rickards for his insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Eugenio Cavanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavanna, A., Monaco, F. Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol 5, 267–276 (2009). https://doi.org/10.1038/nrneurol.2009.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing