Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid biology of the podocyte—new perspectives offer new opportunities

Key Points

  • Lipids and lipid-related enzymes might modulate podocyte function

  • Lipid biology is important in understanding the pathogenesis of glomerular diseases of metabolic and nonmetabolic origin

  • Plasma membrane and intracellular lipids can modulate podocyte function irrespective of circulating lipids

  • Therapeutic strategies that target cellular lipids, such as cholesterol and sphingolipids, might be protective in kidney disease

Abstract

In the past 15 years, major advances have been made in understanding the role of lipids in podocyte biology. First, susceptibility to focal segmental glomerulosclerosis (FSGS) and glomerular disease is associated with an APOL1 sequence variant, is expressed in podocytes and encodes apolipoprotein L1, an important component of HDL. Second, acid sphingomyelinase-like phosphodiesterase 3b encoded by SMPDL3b has a role in the conversion of sphingomyelin to ceramide and its levels are reduced in renal biopsy samples from patients with recurrent FSGS. Furthermore, decreased SMPDL3b expression is associated with increased susceptibility of podocytes to injury after exposure to sera from these patients. Third, in many individuals with membranous nephropathy, autoantibodies against the phospholipase A2 (PLA2) receptor, which is expressed in podocytes, have been identified. Whether these autoantibodies affect the activity of PLA2, which liberates arachidonic acid from glycerophospholipids and modulates podocyte function, is unknown. Fourth, clinical and experimental evidence support a role for ATP-binding cassette sub-family A member 1-dependent cholesterol efflux, free fatty acids and glycerophospolipids in the pathogenesis of diabetic kidney disease. An improved understanding of lipid biology in podocytes might provide insights to develop therapeutic targets for primary and secondary glomerulopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipids in the slit diaphragm.
Figure 2: Podocyte handling of cholesterol and free fatty acids.
Figure 3: Role of lipids other than cholesterol in podocytes.

Similar content being viewed by others

References

  1. Fessler, M. B. & Parks, J. S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signalling. J. Immunol. 187, 1529–1535 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Schonholzer, K. W., Waldron, M. & Magil, A. B. Intraglomerular foam cells and human focal glomerulosclerosis. Nephron 62, 130–136 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, H. S. & Kruth, H. S. Accumulation of cholesterol in the lesions of focal segmental glomerular sclerosis. Nephrology (Carlton) 8, 224–223 (2003).

    Article  CAS  Google Scholar 

  4. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pays, E. et al. The trypanolytic factor of human serum. Nat. Rev. Microbiol. 4, 477–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X. X. et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59, 2916–2927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merscher-Gomez, S. et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62, 3817–3827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tachibana, H. et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J. Am. Soc. Nephrol. 23, 1835–1846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kiss, E. et al. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors. Am. J. Pathol. 182, 727–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. & Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 55, 561–572 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Zador, I. Z. et al. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J. Clin. Invest. 91, 797–803 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Najafian, B. et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 79, 663–670 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Beck, L. H. Jr. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 3, 85ra46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abi-Mosleh, L., Infante, R. E., Radhakrishnan, A., Goldstein, J. L. & Brown, M. S. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc. Natl Acad. Sci. USA 106, 19316–19321 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maxfield, F. R. & Wustner, D. Intracellular cholesterol transport. J. Clin. Invest. 110, 891–898 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fielding, C. J. & Fielding, P. E. Cellular cholesterol efflux. Biochim. Biophys. Acta 1533, 175–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Peake, K. B. & Vance, J. E. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 584, 2731–2739 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le Lay, S. et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J. Biol. Chem. 276, 16904–16910 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Christian, A. E., Haynes, M. P., Phillips, M. C. & Rothblat, G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 38, 2264–2272 (1997).

    CAS  PubMed  Google Scholar 

  25. Tang, C., Kanter, J. E., Bornfeldt, K. E., Leboeuf, R. C. & Oram, J. F. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J. Lipid Res. 51, 1719–1728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Mulya, A. et al. Initial interaction of apoA-I with ABCA1 impacts in vivo metabolic fate of nascent HDL. J. Lipid Res. 49, 2390–2401 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huber, T. B. et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc. Natl Acad. Sci. USA 103, 17079–17086 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bie, J., Zhao, B., Song, J. & Ghosh, S. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. J. Biol. Chem. 285, 13630–13637 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sorensson, J. et al. Glomerular endothelial fenestrae in vivo are not formed from caveolae. J. Am. Soc. Nephrol. 13, 2639–2647 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, G., Li, Q., Wang, L., Chen, Y. & Zhang, W. Interleukin-1β enhances the intracellular accumulation of cholesterol by up-regulating the expression of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase in podocytes. Mol. Cell Biochem. 346, 197–204 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Mayrhofer, C. et al. Alterations in fatty acid utilization and an impaired antioxidant defense mechanism are early events in podocyte injury: a proteomic analysis. Am. J. Pathol. 174, 1191–1202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins, A. J. et al. US Renal Data System 2013 Annual Data Report. Am. J. Kidney Dis. 63 (Suppl.) A7 (2014).

    Article  PubMed  Google Scholar 

  35. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duchateau, P. N. et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. J. Biol. Chem. 272, 25576–25582 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Zhaorigetu, S., Wan, G., Kaini, R., Jiang, Z. & Hu, C. ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 4, 1079–1082 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540–21549 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hartleben, B., Wanner, N. & Huber, T. B. Autophagy in glomerular health and disease. Semin. Nephrol. 34, 42–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Précourt, L. P. et al. The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosism 214, 20–36 (2011).

    Article  CAS  Google Scholar 

  41. Sreckovic, I. et al. Distinct composition of human fetal HDL attenuates its anti-oxidative capacity. Biochim. Biophys. Acta 1831, 737–746 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Araki, S. et al. Polymorphisms of human paraoxonase 1 gene (PON1) and susceptibility to diabetic nephropathy in type I diabetes mellitus. Diabetologia 43, 1540–1543 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bentley, A. R. et al. Variation in APOL1 contributes to ancestry-level differences in HDLc-kidney function association. Int. J. Nephrol. 2012, 748984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito, K. et al. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ. Res. 114, 845–850 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, X. et al. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J. Biol. Chem. 283, 2129–2138 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Medapalli, R. K., He, J. C. & Klotman, P. E. HIV-associated nephropathy: pathogenesis. Curr. Opin. Nephrol. Hypertens. 20, 306–311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D'Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Elmaci, A. M. et al. A case of homozygous familial hypercholesterolemia with focal segmental glomerulosclerosis. Pediatr. Nephrol. 22, 1803–1805 (2007).

    Article  PubMed  Google Scholar 

  51. Asami, T., Ciomartan, T., Hayakawa, H., Uchiyama, M. & Tomisawa, S. Apolipoprotein Eε4 allele and nephrotic glomerular diseases in children. Pediatr. Nephrol. 13, 233–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balasubramanyam, A. et al. Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice. Am. J. Physiol. Endocrinol. Metab. 292, E40–E48 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Shrivastav, S. et al. HIV-1 Vpr enhances PPARβ/δ-mediated transcription, increases PDK4 expression, and reduces PDC activity. Mol. Endocrinol. 27, 1564–1576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui, H. L. et al. HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J. Lipid Res. 53, 696–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gibellini, D. et al. HIV-related mechanisms in atherosclerosis and cardiovascular diseases. J. Cardiovasc. Med. (Hagerstown) 14, 780–790 (2013).

    Article  CAS  Google Scholar 

  57. Alroy, J., Sabnis, S. & Kopp, J. B. Renal pathology in Fabry disease. J. Am. Soc. Nephrol. 13, (Suppl. 2) S134–S138 (2002).

    Article  PubMed  Google Scholar 

  58. Sanchez-Nino, M. D. et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol. Dial. Transplant. 26, 1797–1802 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Thurberg, B. L. et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 62, 1933–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Chander, P. N., Nurse, H. M. & Pirani, C. L. Renal involvement in adult Gaucher's disease after splenectomy. Arch. Pathol. Lab. Med. 103, 440–445 (1979).

    CAS  PubMed  Google Scholar 

  61. Townsend, R. R., Orth, R. M., Clawson, C. M., Li, S. C. & Li, Y. T. Increased glycosphingolipid excretion associated with proteinuria. J. Clin. Invest. 62, 119–123 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin, J. et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151, 384–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Kwak, D. H. et al. Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Sci. 72, 1997–2006 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Novak, A. et al. Renal distribution of ganglioside GM3 in rat models of types 1 and 2 diabetes. J. Physiol. Biochem. 69, 727–735 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Galeano, B. et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J. Clin. Invest. 117, 1585–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tatematsu, M. et al. Sandhoff disease. Acta Pathol. Jpn 31, 503–512 (1981).

    CAS  PubMed  Google Scholar 

  68. Reivinen, J., Holthofer, H. & Miettinen, A. A cell-type specific ganglioside of glomerular podocytes in rat kidney: an O-acetylated GD3. Kidney Int. 42, 624–631 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Simons, M. et al. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am. J. Pathol. 159, 1069–1077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holthofer, H., Reivinen, J., Solin, M. L., Haltia, A. & Miettinen, A. Decrease of glomerular disialogangliosides in puromycin nephrosis of the rat. Am. J. Pathol. 149, 1009–1015 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Awad, A. S. et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int. 79, 1090–1098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jo, S. K., Bajwa, A., Awad, A.S., Lynch, K. R. & Okusa, M.D. Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidney disease. Kidney Int. 73, 1220–1230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tasaki, M. et al. Rituximab treatment prevents the early development of proteinuria following pig-to-babon xeno-kidney transplantation. J. Am. Soc. Nephrol. 25, 737–744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Kunnen, S. & Van Eck, M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J. Lipid Res. 53, 1783–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Calabresi, L. & Franceschini, G. Lecithin: cholesterol acyltransferase, high-density lipoproteins, and atheroprotection in humans. Trends Cardiovasc. Med. 20, 50–53 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Jimi, S. et al. Possible induction of renal dysfunction in patients with lecithin:cholesterol acyltransferase deficiency by oxidized phosphatidylcholine in glomeruli. Arterioscler. Thromb. Vasc. Biol. 19, 794–801 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Rousset, X., Shamburek, R., Vaisman, B., Amar, M. & Remaley, A. T. Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor? Curr. Atheroscler. Rep. 13, 249–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Augert, A. et al. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep. 10, 271–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Allyson, J., Bi, X., Baudry, M. & Massicotte, G. Maintenance of synaptic stability requires calcium-independent phospholipase A2 activity. Neural Plast. 2012, 569149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Giardino, L. et al. Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J. Am. Soc. Nephrol. 20, 1929–1940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Collins, A. J. et al. United States Renal Data System 2011 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Am. J. Kidney Dis. 59, e1–e420 (2011).

    Google Scholar 

  84. Meyer, T. W., Bennett, P. H. & Nelson, R. G. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42, 1341–1344 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Steffes, M. W., Schmidt, D., McCrery, R. & Basgen, J. M. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 59, 2104–2113 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Verzola, D. et al. Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int. 72, 1262–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. White, K. E. et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes 51, 3083–3089 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Hovind, P. et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care 26, 1258–1264 (2003).

    Article  PubMed  Google Scholar 

  90. Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Miller, Y. I., Choi, S. H., Fang, L. & Harkewicz, R. Toll-like receptor-4 and lipoprotein accumulation in macrophages. Trends Cardiovasc. Med. 19, 227–232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qi, M., Liu, Y., Freeman, M.R. & Solomon, K.R. Cholesterol-regulated stress fiber reduction. J. Cell Biochem. 106, 1031–1040 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Yu, B.L. Zhao, S.P. & Hu, J.R. Cholesterol imbalance in adipocytes: a possible mechanism of adipocytes dysfunction in obesity. Obes. Rev. 11, 560–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Jiang, T. et al. Diet-induced obesity in C57BL/56J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J. Biol. Chem. 280, 32317–32325 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54, 2328–2335 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Nosadini, R. & Tonolo, G. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 21, 79–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Tam, J. et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell. Metab. 16, 167–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Saltiel, A. R. & Pessin, J. E. Insulin signaling in microdomains of the plasma membrane. Traffic 4, 711–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Uhles, S., Moede, T., Leibiger, B., Berggren, P. O. & Leibiger, I. B. Isoform-specific insulin receptor signaling involves different plasma membrane domains. J. Cell Biol. 163, 1327–1337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. White, M. F. & Kahn, C. R. The insulin signaling system. J. Biol. Chem. 269, 1–4 (1994).

    CAS  PubMed  Google Scholar 

  104. Ekstrand, A. V., Groop, P. H. & Gronhagen-Riska, C. Insulin resistance precedes microalbuminuria in patients with insulin-dependent diabetes mellitus. Nephrol. Dial. Transplant. 13, 3079–3083 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Yip, J. et al. Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet 342, 883–887 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Groop, L. et al. Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 36, 642–647 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Parvanova, A. I. et al. Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 55, 1456–1462 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Forsblom, C. M. et al. Insulin resistance and abnormal albumin excretion in non-diabetic first-degree relatives of patients with NIDDM. Diabetologia 38, 363–369 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Yip, J., Mattock, M., Sethi, M., Morocutti, A. & Viberti, G. Insulin resistance in family members of insulin-dependent diabetic patients with microalbuminuria. Lancet 341, 369–370 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Mykkanen, L. et al. Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 47, 793–800 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou, H., Tan, K. C., Shiu, S. W. & Wong, Y. Cellular cholesterol efflux to serum is impaired in diabetic nephropathy. Diabetes Metab. Res. Rev. 24, 617–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Fang, L. et al. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 498, 118–122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gohda, T. et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 23, 516–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Niewczas, M. A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 23, 507–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, Y. et al. Inflammatory stress exacerbates hepatic cholesterol accumulation via disrupting cellular cholesterol export. J. Gastroenterol. Hepatol. 27, 974–984 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Field, F. J., Watt, K. & Mathur, S. N. TNF-α decreases ABCA1 expression and attenuates HDL cholesterol efflux in the human intestinal cell line Caco-2. J. Lipid Res. 51, 1407–1415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hashizume, M. & Mihara, M. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine 58, 424–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Kramer-Guth, A. et al. Uptake and metabolism of lipoproteins from patients with diabetes mellitus type II by glomerular epithelial cells. Nephrol. Dial. Transplant. 12, 1336–1343 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Gutwein, P. et al. CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. Am. J. Pathol. 174, 2061–2072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bussolati, B. et al. Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. J. Am. Soc. Nephrol. 16, 1936–1947 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Hyvonen, M. E. et al. Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol. Cell Endocrinol. 328, 70–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Lennon, R. et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol. Dial. Transplant. 24, 3288–3296 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol. 299, F821–F829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sieber, J. et al. Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2. Am. J. Pathol. 183, 735–744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nosadini, R. & Tonolo, G. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 21, 79–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Soetikno, V. et al. Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J. Nutr. Biochem. 24, 796–802 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Lee, H. S. Mechanisms and consequences of hypertriglyceridemia and cellular lipid accumulation in chronic kidney disease and metabolic syndrome. Histol. Histopathol. 26, 1599–1610 (2011).

    CAS  PubMed  Google Scholar 

  129. Chen, H.M., Zhen, C.X., Gao, Q., Ge, Y.C. & Liu, Z.H. Heart-type fatty acid binding protein is associated with proteinuria in obesity. PLoS ONE. 7, e45691 (2011).

    Article  CAS  Google Scholar 

  130. Lee, H. S. & Lee, S. K. Intraglomerular lipid deposition in renal disease. Miner. Electrolyte Metab. 19, 144–148 (1993).

    CAS  PubMed  Google Scholar 

  131. Douglas, K., O'Malley, P. G. & Jackson, J. L. Meta-analysis: the effect of statins on albuminuria. Ann. Intern. Med. 145, 117–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Agarwal, R. Effects of statins on renal function. Am. J. Cardiol. 97, 748–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Colhoun, H. M. et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am. J. Kidney Dis. 54, 810–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Katz, A. et al. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J. Clin. Pharmacol. 49, 643–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Grefhorst, A. et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem. 277, 34182–34190 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Stella, V. J. & He, Q. Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Arima, H. et al. Inhibitory effects of dimethylacetyl-beta-cyclodextrin on lipopolysaccharide-induced macrophage activation and endotoxin shock in mice. Biochem. Pharmacol. 70, 1506–1517 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, P. et al. Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism. Am. J. Physiol. Cell Physiol. 286, C317–C329 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Horvath, E. M., Tackett, L. & Elmendorf, J. S. A novel membrane-based anti-diabetic action of atorvastatin. Biochem. Biophys. Res. Commun. 372, 639–643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Horvath, E. M. et al. Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance. Mol. Endocrinol. 22, 937–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Addi and Cassi Fund. addiandcassi.com [online], (2014).

  142. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, X. X. et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Renal Physiol. 297, F1587–F1596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

Download references

Acknowledgements

A.F. and S.M. are supported by the NIH and NIDDK (grant numbers DK090316 and 5U24DX076169), the National Center for Advancing Translational Sciences (grant number 1UL1TR000460), the Diabetes Research Institute Foundation, the Nephcure Foundation and the Peggy and Harold Katz Family Foundation. S.M. is supported by the Stanley J. Glaser Foundation Research Award. J.B.K. is supported by the NIDDK Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

J.B.K. researched the data and A.F. wrote the article. S.M. and J.B.K. provided substantial contributions to discussion of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Alessia Fornoni.

Ethics declarations

Competing interests

S.M. and A.F. hold patent application numbers US13/879,892, PCT/US11/56272: 'Assays, methods and kits for predicting renal disease and personalized treatment strategies'; PCT/US2012/062594, 'Soluble urokinase receptor (suPAR) in diabetic kidney disease'; PCT/US13/36484, 'Method of using cyclodextrin'. A.F. is a consultant for Hoffman-La Roche and Mesoblast. J.B.K. Declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornoni, A., Merscher, S. & Kopp, J. Lipid biology of the podocyte—new perspectives offer new opportunities. Nat Rev Nephrol 10, 379–388 (2014). https://doi.org/10.1038/nrneph.2014.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing