Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and biological functions of autophagy in diseased and ageing kidneys

Key Points

  • Autophagy is a lysosomal-mediated process that degrades cytoplasmic components

  • Autophagy involves the formation and degradation of double-membrane-limited vesicles called autophagosomes

  • The main activators of autophagic flux are immune stimuli and starvation

  • Autophagy promotes cytoprotection by inhibiting apoptosis, inflammation and oxidative stress

  • Autophagy is renoprotective in numerous models of acute kidney injury, glomerular disease and ageing

  • The importance of autophagy in the pathophysiology of human renal disease remains to be determined

Abstract

Autophagy degrades pathogens, altered organelles and protein aggregates, and is characterized by the sequestration of cytoplasmic cargos within double-membrane-limited vesicles called autophagosomes. The process is regulated by inputs from the cellular microenvironment, and is activated in response to nutrient scarcity and immune triggers, which signal through a complex molecular network. Activation of autophagy leads to the formation of an isolation membrane, recognition of cytoplasmic cargos, expansion of the autophagosomal membrane, fusion with lysosomes and degradation of the autophagosome and its contents. Autophagy maintains cellular homeostasis during stressful conditions, dampens inflammation and shapes adaptive immunity. A growing body of evidence has implicated autophagy in kidney health, ageing and disease; it modulates tissue responses during acute kidney injuries, regulates podocyte homeostasis and protects against age-related renal disorders. The renoprotective functions of autophagy in epithelial renal cells and podocytes are mostly mediated by the clearance of altered mitochondria, which can activate inflammasomes and apoptosis, and the removal of protein aggregates, which might trigger inflammation and cell death. In translational terms, autophagy is undoubtedly an attractive target for developing new renoprotective treatments and identifying markers of kidney injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular biology of autophagy.
Figure 2: The process of mitophagy.
Figure 3: Immune and metabolic signals regulate autophagy.
Figure 4: Putative cytoprotective functions of autophagy in tubular cells and podocytes.

Similar content being viewed by others

References

  1. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Clark, S. L. Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J. Biophys. Biochem. Cytol. 3, 349–362 (1957).

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Duve, C. The lysosome. Sci. Am. 208, 64–72 (1963).

    Article  CAS  PubMed  Google Scholar 

  4. Mikles-Robertson, F., Dave, C. & Porter, C. W. Apparent autophagocytosis of mitochondria in L1210 leukemia cells treated in vitro with 4,4′-diacetyl-diphenylurea-bis(guanylhydrazone). Cancer Res. 40, 1054–1061 (1980).

    CAS  PubMed  Google Scholar 

  5. Novikoff, A. B. & Shin, W. Y. Endoplasmic reticulum and autophagy in rat hepatocytes. Proc. Natl Acad. Sci. USA 75, 5039–5042 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273, 33889–33892 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Mijaljica, D., Prescott, M. & Devenish, R. J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Kaushik, S. & Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh, R. & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 13, 805–811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baehrecke, E. H. Autophagy: dual roles in life and death? Nat. Rev. Mol. Cell Biol. 6, 505–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349, 275–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7–12 (2011).

    Article  PubMed  CAS  Google Scholar 

  24. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M. & Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 Inhibition. Mol. Cell 53, 521–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. He, C. & Levine, B. The Beclin 1 interactome. Curr. Opin. Cell Biol. 22, 140–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Zavodszky, E., Vicinanza, M. & Rubinsztein, D. C. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 587, 1988–1996 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Ragusa, M. J., Stanley, R. E. & Hurley, J. H. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151, 1501–1512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lamark, T., Kirkin, V., Dikic, I. & Johansen, T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986–1990 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651–4659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fullgrabe, J., Klionsky, D. J. & Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15, 65–74 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Tsuyuki, S. et al. Detection of mRNA as an indicator of autophagosome formation. Autophagy 10, 497–513 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Levine, B. & Kroemer, G. Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ. 16, 1–2 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Shen, H. M. & Codogno, P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7, 457–465 (2010).

    Article  Google Scholar 

  47. Liu, Y. et al. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gump, J. M. et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol. 16, 47–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Kenzelmann Broz, D. & Attardi, L. D. TRP53 activates a global autophagy program to promote tumor suppression. Autophagy 9, 1440–1442 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013).

    Google Scholar 

  52. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Maiuri, M. C. et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL . Autophagy 3, 374–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Malik, S. A. et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30, 3918–3929 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hou, W., Han, J., Lu, C., Goldstein, L. A. & Rabinowich, H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891–900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  60. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi, C. S. & Kehrl, J. H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3, ra42 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Talloczy, Z. et al. Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc. Natl Acad. Sci. USA 99, 190–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bell, C. et al. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-α-activated (TNFα) macrophages. Mol. Cell. Proteomics 12, 2394–2407 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Shen, S. et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA 104, 14050–14055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, C. S. et al. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe 11, 277–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Munz, C. Antigen processing for MHC class II presentation via autophagy. Front. Immunol. 3, 9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Munz, C. Selective macroautophagy for immunity. Immunity 32, 298–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Wenger, T. et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8, 350–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Fiegl, D. et al. Amphisomal route of MHC class I cross-presentation in bacteria-infected dendritic cells. J. Immunol. 190, 2791–2806 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, E3168–E3176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chien, C. T., Shyue, S. K. & Lai, M. K. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplantation 84, 1183–1190 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki, C. et al. Participation of autophagy in renal ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 368, 100–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8, 826–837 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Jiang, M., Liu, K., Luo, J. & Dong, Z. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am. J. Pathol. 176, 1181–1192 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bolisetty, S. et al. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J. Am. Soc. Nephrol. 21, 1702–1712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271–1283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishihara, M. et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol. 305, F495–F509 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Inoue, K. et al. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo. Clin. Exp. Nephrol. 14, 112–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Periyasamy-Thandavan, S. et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int. 74, 631–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, C., Kaushal, V., Shah, S. V. & Kaushal, G. P. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 294, F777–F787 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Pallet, N. et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4, 783–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Lim, S. W. et al. Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation 94, 218–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Kimura, T. et al. Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress. Autophagy 9, 1876–1886 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Chargui, A. et al. Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol. Sci. 121, 31–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Kimura, A. et al. The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation. Am. J. Pathol. 176, 40–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Takahashi, A. et al. Autophagy guards against cisplatin-induced acute kidney injury. Am. J. Pathol. 180, 517–525 (2010).

    Article  CAS  Google Scholar 

  102. Kaushal, G. P., Kaushal, V., Herzog, C. & Yang, C. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4, 710–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Herzog, C., Yang, C., Holmes, A. & Kaushal, G. P. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am. J. Physiol. Renal Physiol. 303, F1239–F1250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pallet, N. et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am. J. Transplant. 8, 2283–2296 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Ding, W. X. et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702–4710 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Howell, G. M. et al. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS ONE 8, e69520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hsiao, H. W. et al. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 37, 289–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, C. et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl Acad. Sci. USA 109, 11008–11013 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, C. et al. NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection. Autophagy 10, 331–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sorbara, M. T. et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858–873 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fang, L. et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8, e60546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, J., Chen, M. X., Fogo, A. B., Harris, R. C. & Chen, J. K. mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J. Am. Soc. Nephrol. 24, 198–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bechtel, W. et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J. Am. Soc. Nephrol. 24, 727–743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Riediger, F. et al. Prorenin receptor is essential for podocyte autophagy and survival. J. Am. Soc. Nephrol. 22, 2193–2202 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Meima, M. E. & Danser, A. H. The prorenin receptor: what's in a name. J. Am. Soc. Nephrol. 22, 2141–2143 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Liebau, M. C. et al. Dysregulated autophagy contributes to podocyte damage in Fabry's disease. PLoS ONE 8, e63506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chevrier, M. et al. Autophagosome maturation is impaired in Fabry disease. Autophagy 6, 589–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Demetriades, C., Doumpas, N. & Teleman, A. A. Regulation of TORC1 in Response to Amino Acid Starvation via Lysosomal Recruitment of TSC2. Cell 156, 786–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Menon, S. et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Belibi, F. et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235–F1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pampliega, O. et al. Functional interaction between autophagy and ciliogenesis. Nature 502, 194–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540–21549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Adam, J. et al. Endoplasmic reticulum stress in UMOD-related kidney disease: a human pathologic study. Am. J. Kidney Dis. 59, 117–121 (2011).

    Article  PubMed  CAS  Google Scholar 

  131. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Collins, A. J. et al. Excerpts from the US Renal Data System 2009 Annual Data Report. Am. J. Kidney Dis. 55, S1–S420 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liu, W. J. et al. Autophagy activation reduces renal tubular injury induced by urinary proteins. Autophagy 10, 243–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kitada, M. et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp. Diabetes Res. 2011, 908185 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cui, J. et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS ONE 8, e69720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yamahara, K. et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol 24, 1769–1781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Lloberas, N. et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J. Am. Soc. Nephrol. 17, 1395–1404 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Inoki, K. & Huber, T. B. Mammalian target of rapamycin signaling in the podocyte. Curr. Opin. Nephrol. Hypertens. 21, 251–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Satriano, J. & Sharma, K. Autophagy and metabolic changes in obesity-related chronic kidney disease. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv29–iv36 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. Lieberthal, W. et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am. J. Physiol. Renal Physiol. 281, F693–F706 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. McTaggart, R. A. et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am. J. Transplant. 3, 416–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Nakagawa, S., Nishihara, K., Inui, K. & Masuda, S. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur. J. Pharmacol. 696, 143–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Letavernier, E. et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin. J. Am. Soc. Nephrol. 2, 326–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Cina, D. P. et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J. Am. Soc. Nephrol. 23, 412–420 (2011).

    Article  PubMed  CAS  Google Scholar 

  147. Pallet, N. & Legendre, C. Adverse events associated with mTOR inhibitors. Expert Opin. Drug Saf. 12, 177–186 (2012).

    Article  PubMed  CAS  Google Scholar 

  148. Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Martinet, W., Schrijvers, D. M., Timmermans, J. P., Bult, H. & De Meyer, G. R. Immunohistochemical analysis of macroautophagy: recommendations and limitations. Autophagy 9, 386–402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Verghese, D. A. et al. Costimulatory blockade-induced allograft survival requires Beclin1. Am. J. Transplant. 14, 545–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Koesters, R. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177, 632–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yadav, A. et al. ANG II promotes autophagy in podocytes. Am. J. Physiol. Cell Physiol. 299, C488–C496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ponnusamy, M. et al. Autophagy protects against necrotic renal epithelial cell-induced death of renal interstitial fibroblasts. Am. J. Physiol. Renal Physiol. 303, F83–F91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data, discussed the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Nicolas Pallet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fougeray, S., Pallet, N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol 11, 34–45 (2015). https://doi.org/10.1038/nrneph.2014.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing