Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modelling neurodegenerative diseases in Drosophila: a fruitful approach?

Abstract

Human neurodegenerative diseases are characterized by the progressive loss of specific neuronal populations, resulting in substantial disability and early death. The identification of causative single-gene mutations in families with inherited neurodegenerative disorders has facilitated the modelling of these diseases in experimental organisms, including the fruitfly Drosophila melanogaster. Many neurodegenerative diseases have now been successfully modelled in Drosophila, and genetic analysis is under way in each of these models. Using fruitfly genetics to define the molecular pathways that underlie the neurodegenerative process is likely to improve substantially our understanding of the pathogenesis of the human diseases, and to provide new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein aggregation in human neurodegenerative diseases.
Figure 2: Making the fly model.
Figure 3: Unbiased identification of second-site modifiers of neurodegeneration in flies.

Similar content being viewed by others

References

  1. Morgan, T. H. The Physical Basis of Heredity (J. B. Lippincott, Philadelphia, 1919).

    Book  Google Scholar 

  2. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. Psych.-Gerichtl. Med. 64, 146–148 (1907).

    Google Scholar 

  3. Lewy, F. Zur pathologischen Anatomie der Paralysis agitans. Dtsch. Z. Nervenheilkd. 50, 50–55 (1913).

    Google Scholar 

  4. St Johnston, D. & Nusslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    Article  CAS  Google Scholar 

  5. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  6. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  7. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  Google Scholar 

  8. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 106–108 (1998).

    Article  CAS  Google Scholar 

  9. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  Google Scholar 

  10. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    Article  CAS  Google Scholar 

  11. Arriagada, P. V., Growden, J. H., Hedley-Whyte, T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639 (1992).

    Article  CAS  Google Scholar 

  12. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  Google Scholar 

  13. Wittmann, C. W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714 (2001).

    Article  CAS  Google Scholar 

  14. Herreman, A. et al. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol. 2, 461–462 (2000).

    Article  CAS  Google Scholar 

  15. Esler, W. P. et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biol. 2, 428–434 (2000).

    Article  CAS  Google Scholar 

  16. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  17. Hardy, J. The Alzheimer family of diseases: many aetiologies, one pathogenesis. Proc. Natl Acad. Sci. USA 94, 2095–2097 (1997).

    Article  CAS  Google Scholar 

  18. Gunawardena, S. & Goldstein, L. S. B. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389–401 (2001).

    Article  CAS  Google Scholar 

  19. Fossgreen, A. et al. Transgenic Drosophila expressing human amyloid precursor protein show γ-secretase activity and a blistered-wing phenotype. Proc. Natl Acad. Sci. USA 95, 13703–13708 (1998).

    Article  CAS  Google Scholar 

  20. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  Google Scholar 

  21. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529 (1999).

    Article  CAS  Google Scholar 

  22. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995).

    Article  CAS  Google Scholar 

  23. Struhl, G. & Greenwald, I. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc. Natl Acad. Sci. USA 98, 229–234 (2001).

    Article  CAS  Google Scholar 

  24. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  Google Scholar 

  25. Cao, X. & Sudhof, T. A. Transcriptively active complex of APP with Fe65 and histone actyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  Google Scholar 

  26. Gusella, J. F. & MacDonald, M. E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Rev. Neurosci. 1, 109–115 (2000).

    Article  CAS  Google Scholar 

  27. Marsh, J. L. et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9, 13–25 (2000).

    Article  CAS  Google Scholar 

  28. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293, 493–498 (2001).

    Article  CAS  Google Scholar 

  29. Yuasa, T. et al. Joseph's disease: clinical and pathologic studies in a Japanese family. Ann. Neurol. 19, 152–157 (1986).

    Article  CAS  Google Scholar 

  30. Ikeda, H. et al. Expanded polyglutamine in the Machado– Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    Article  CAS  Google Scholar 

  31. Warrick, J. M. et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949 (1998).

    Article  CAS  Google Scholar 

  32. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  33. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  34. Jackson, G. R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    Article  CAS  Google Scholar 

  35. Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  36. Fernandez-Funez, P. et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101–106 (2000).

    Article  CAS  Google Scholar 

  37. Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet. 23, 425–428 (1999).

    Article  CAS  Google Scholar 

  38. Chan, H. Y. E., Warrick, J. M., Gray-Board, G. L., Paulson, H. L. & Bonini, N. M. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9, 2811–2820 (2000).

    Article  CAS  Google Scholar 

  39. Auluck, P. K., Chan, H. Y. E., Trojanowski, J. Q., Lee, V. M.-Y. & Bonini, N. M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 20 December 2001 (10.1126/science.1067389).

  40. Kazemi-Esfarjani, P. & Benzer, S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837–1840 (2000).

    Article  CAS  Google Scholar 

  41. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    Article  CAS  Google Scholar 

  42. Davidson, F. F. & Stellar, H. Blocking apoptosis prevents blindness in Drosophila retinal degeneration mutants. Nature 391, 587–591 (1998).

    Article  CAS  Google Scholar 

  43. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  Google Scholar 

  44. Gotz, J., Chen, J., Van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293, 1491–1495 (2001).

    Article  CAS  Google Scholar 

  45. Elia, A. J. et al. Expression of human FALS SOD in motoneurons of Drosophila. Free Radic. Biol. Med. 26, 1332–1338 (1999).

    Article  CAS  Google Scholar 

  46. Raeber, A. J., Muramoto, T., Kornberg, T. B. & Prusiner, S. B. Expression and targeting of Syrian hamster prion protein induced by heat shock in transgenic Drosophila melanogaster. Mech. Dev. 51, 317–327 (1995).

    Article  CAS  Google Scholar 

  47. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  48. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  Google Scholar 

  49. Osterwalder, T., Yoon, K. S., White, B. H. & Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl Acad. Sci. USA 98, 12596–12601 (2001).

    Article  CAS  Google Scholar 

  50. Stebbins, M. J. et al. Tetracycline-inducible systems for Drosophila. Proc. Natl Acad. Sci. USA 98, 10775–10780 (2001).

    Article  CAS  Google Scholar 

  51. Min, K.-T. & Benzer, S. Preventing neurodegeneration in the Drosophila mutant bubblegum. Science 284, 1985–1988 (1999).

    Article  CAS  Google Scholar 

  52. Van Geel, B. M. et al. Progression of abnormalities in adrenomyeloneuropathy and neurologically asymptomatic X-linked adrenoleukodystrophy despite treatment with 'Lorenzo's oil'. J. Neurol. Neurosurg. Psychiatry 67, 290–299 (1999).

    Article  CAS  Google Scholar 

  53. Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M. & Benzer, S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J. Neurosci. 17, 7425–7432 (1997).

    Article  CAS  Google Scholar 

  54. Min, K. T. & Benzer, S. Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration. Curr. Biol. 7, 885–888 (1997).

    Article  CAS  Google Scholar 

  55. Buchanan, R. L. & Benzer, S. Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron 10, 839–850 (1993).

    Article  CAS  Google Scholar 

  56. Eberl, D. F., Duyk, G. M. & Perrimon, N. A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 94, 14837–14842 (1997).

    Article  CAS  Google Scholar 

  57. Bennett, C. L. & Chance, P. F. Molecular pathogenesis of hereditary motor, sensory and autonomic neuropathies. Curr. Opin. Neurol. 14, 621–627 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel B. Feany.

Related links

Related links

DATABASES

FlyBase

Appl

bubblegum

CtBP

dishevelled

DnaJ-1

drop dead

eggroll

elav

GMR

Notch

parkin

pirouette

Rpd3

Sin3A

Sir2

spongecake

swiss cheese

Tpr2

 LocusLink

APP

ataxin 1

ataxin 3

CBP

HDJ1

HSP70

huntingtin

NOTCH3

parkin

presenilin 1

presenilin 2

prion protein

superoxide dismutase

α-synuclein

TAU

TPR2

 OMIM

ALD

ALS

Alzheimer's disease

CADASIL

Charcot–Marie–Tooth disease

Creutzfeldt–Jakob disease

FTDP-17

Huntington's disease

Parkinson's disease

retinitis pigmentosa

SCA-1

SCA-3

 Saccharomyces Genome Database

GAL4

FURTHER INFORMATION

Alzheimer disease

Huntington disease

Morgan, Thomas Hunt

Parkinson disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muqit, M., Feany, M. Modelling neurodegenerative diseases in Drosophila: a fruitful approach?. Nat Rev Neurosci 3, 237–243 (2002). https://doi.org/10.1038/nrn751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing