Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modes and regulation of glial migration in vertebrates and invertebrates

Key Points

  • Vertebrates and invertebrates have similar sets of glial cells that perform comparable functional tasks.

  • A hallmark of all glial cells is their pronounced migratory ability. Glial cells in the PNS and in the CNS can be discriminated by distinct migratory strategies.

  • In the PNS, glial cells generally move in cohorts, a migration mode that has been termed collective migration.

  • In the CNS, glial cells generally migrate as single cells.

  • Model systems such as Drosophila melanogaster provide excellent tools to study glial migration with single-cell resolution.

  • Given the evolutionary conservation of glial cells, invertebrate models are expected to advance our understanding of glial cell migration.

Abstract

Neurons and glial cells show mutual interdependence in many developmental and functional aspects of their biology. To establish their intricate relationships with neurons, glial cells must migrate over what are often long distances. In the CNS glial cells generally migrate as single cells, whereas PNS glial cells tend to migrate as cohorts of cells. How are their journeys initiated and directed, and what stops the migratory phase once glial cells are aligned with their neuronal counterparts? A deeper understanding of glial migration and the underlying neuron–glia interactions may contribute to the development of therapeutics for demyelinating diseases or glial tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glial migration in vertebrates.
Figure 2: Glial migration in Drosophila melanogaster.
Figure 3: Single cell and chain migration.
Figure 4: Molecular mechanisms underlying single-cell and chain migration.

Similar content being viewed by others

References

  1. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

    CAS  PubMed  Google Scholar 

  2. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Google Scholar 

  3. Nave, K. A. & Trapp, B. D. Axon–glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    CAS  PubMed  Google Scholar 

  4. Sherman, D. L. & Brophy, P. J. Mechanisms of axon ensheathment and myelin growth. Nature Rev. Neurosci. 6, 683–690 (2005).

    CAS  Google Scholar 

  5. Banerjee, S. & Bhat, M. A. Neuron–glial interactions in blood–brain barrier formation. Annu. Rev. Neurosci. 30, 235–258 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS  PubMed  Google Scholar 

  7. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    CAS  PubMed  Google Scholar 

  8. Jackson, F. R. & Haydon, P. G. Glial cell regulation of neurotransmission and behavior in Drosophila. Neuron Glia Biol. 4, 11–17 (2008).

    PubMed  Google Scholar 

  9. Freeman, M. R. & Doherty, J. Glial cell biology in Drosophila and vertebrates. Trends Neurosci. 29, 82–90 (2006).

    CAS  PubMed  Google Scholar 

  10. Whitington, P. M., Quilkey, C. & Sink, H. Necessity and redundancy of guidepost cells in the embryonic Drosophila CNS. Int. J. Dev. Neurosci. 22, 157–163 (2004).

    CAS  PubMed  Google Scholar 

  11. Leuba, G. & Garey, L. J. Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exp. Brain Res. 77, 31–38 (1989).

    CAS  PubMed  Google Scholar 

  12. Azevedo, F. A. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009).

    PubMed  Google Scholar 

  13. Jelsing, J. et al. The postnatal development of neocortical neurons and glial cells in the Gottingen minipig and the domestic pig brain. J. Exp. Biol. 209, 1454–1462 (2006).

    PubMed  Google Scholar 

  14. von Hilchen, C. M., Beckervordersandforth, R. M., Rickert, C., Technau, G. M. & Altenhein, B. Identity, origin, and migration of peripheral glial cells in the Drosophila embryo. Mech. Dev. 125, 337–352 (2008). Presents the lineage analysis of the peripheral glial cells in the D. melanogaster embryo and gives a unifying nomenclature. It reports the migration behaviour of the peripheral glia and demonstrates that the position of glial cells within the migratory chain is genetically determined.

    CAS  PubMed  Google Scholar 

  15. Beckervordersandforth, R. M., Rickert, C., Altenhein, B. & Technau, G. M. Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech. Dev. 125, 542–557 (2008).

    CAS  PubMed  Google Scholar 

  16. Pereanu, W., Shy, D. & Hartenstein, V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev. Biol. 283, 191–203 (2005).

    CAS  PubMed  Google Scholar 

  17. Jeserich, G., Klempahn, K. & Pfeiffer, M. Features and functions of oligodendrocytes and myelin proteins of lower vertebrate species. J. Mol. Neurosci. 35, 117–126 (2008).

    CAS  PubMed  Google Scholar 

  18. Richardson, W. D., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nature Rev. Neurosci. 7, 11–18 (2006).

    CAS  Google Scholar 

  19. Kawai, H., Arata, N. & Nakayasu, H. Three-dimensional distribution of astrocytes in zebrafish spinal cord. Glia 36, 406–413 (2001).

    CAS  PubMed  Google Scholar 

  20. Tomizawa, K., Inoue, Y., Doi, S. & Nakayasu, H. Monoclonal antibody stains oligodendrocytes and Schwann cells in zebrafish (Danio rerio). Anat. Embryol. (Berl.) 201, 399–406 (2000).

    CAS  Google Scholar 

  21. Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev. 48, 457–476 (2005).

    CAS  PubMed  Google Scholar 

  22. Nave, K. A. & Salzer, J. L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).

    CAS  PubMed  Google Scholar 

  23. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nature Rev. Neurosci. 7, 41–53 (2006).

    CAS  Google Scholar 

  24. Allen, N. J. & Barres, B. A. Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15, 542–548 (2005).

    CAS  PubMed  Google Scholar 

  25. Agulhon, C. et al. What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oland, L. A., Marrero, H. G. & Burger, I. Glial cells in the developing and adult olfactory lobe of the moth Manduca sexta. Cell Tissue Res. 297, 527–545 (1999).

    CAS  PubMed  Google Scholar 

  27. Awasaki, T., Lai, S. L., Ito, K. & Lee, T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J. Neurosci. 28, 13742–13753 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stork, T. et al. Organization and function of the blood–brain barrier in Drosophila. J. Neurosci. 28, 587–597 (2008). References 27 and 28 present a thorough clonal analysis of D. melanogaster glial cells during blood–brain barrier development and adult neurogenesis and demonstrate the morphologies of individual glial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Silies, M. et al. Glial cell migration in the eye disc. J. Neurosci. 27, 13130–13139 (2007). The authors identify the different glial cells of the eye imaginal disc and describe the carpet glia. Ablation experiments clarify the function of the carpet cells during the coordination of the migration of glial cells onto the eye disc.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Doherty, J., Logan, M. A., Tasdemir, O. E. & Freeman, M. R. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29, 4768–4781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Klambt, C. & Goodman, C. S. The diversity and pattern of glia during axon pathway formation in the Drosophila embryo. Glia 4, 205–213 (1991).

    CAS  PubMed  Google Scholar 

  32. Ito, K., Urban, J. & Technau, G. M. Distribution, classification and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux's Arch. Dev. Biol. 204, 284–307 (1995).

    Google Scholar 

  33. Kim, J. et al. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc. Natl Acad. Sci. USA 95, 12364–12369 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ragone, G. et al. Transcriptional regulation of glial cell specification. Dev. Biol. 255, 138–150 (2003).

    CAS  PubMed  Google Scholar 

  35. Jones, B. W. Transcriptional control of glial cell development in Drosophila. Dev. Biol. 278, 265–273 (2005).

    CAS  PubMed  Google Scholar 

  36. Rowitch, D. H. Glial specification in the vertebrate neural tube. Nature Rev. Neurosci. 5, 409–419 (2004).

    CAS  Google Scholar 

  37. Soustelle, L., Besson, M. T., Rival, T. & Birman, S. Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev. Biol. 248, 294–306 (2002).

    CAS  PubMed  Google Scholar 

  38. Edenfeld, G. et al. The splicing factor Crooked neck associates with the RNA-binding protein HOW to control glial cellmaturation in Drosophila. Neuron 52, 969–980 (2006).

    CAS  PubMed  Google Scholar 

  39. Ziegenfuss, J. S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453, 935–939 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rorth, P. Collective guidance of collective cell migration. Trends Cell Biol. 17, 575–579 (2007).

    CAS  PubMed  Google Scholar 

  41. Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441–449 (2004).

    CAS  PubMed  Google Scholar 

  42. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    CAS  Google Scholar 

  43. Perez Villegas, E. M. et al. Early specification of oligodendrocytes in the chick embryonic brain. Dev. Biol. 216, 98–113 (1999).

    CAS  PubMed  Google Scholar 

  44. Kessaris, N., Pringle, N. & Richardson, W. D. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 71–85 (2008).

    CAS  PubMed  Google Scholar 

  45. Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005).

    CAS  PubMed  Google Scholar 

  46. Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

    CAS  PubMed  Google Scholar 

  47. Cai, J. et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45, 41–53 (2005).

    CAS  PubMed  Google Scholar 

  48. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morest, D. K. & Silver, J. Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How do they get where they are going? Glia 43, 6–18 (2003).

    PubMed  Google Scholar 

  50. Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128, 1757–1769 (2001).

    CAS  PubMed  Google Scholar 

  51. Tsai, H. H., Macklin, W. B. & Miller, R. H. Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord. J. Neurosci. Res. 19 Mar 2009 (doi:10.1002/jnr.22058).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmidt, C. et al. Analysis of motile oligodendrocyte precursor cells in vitro and in brain slices. Glia 20, 284–298 (1997).

    CAS  PubMed  Google Scholar 

  53. Simpson, P. B. & Armstrong, R. C. Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia 26, 22–35 (1999).

    CAS  PubMed  Google Scholar 

  54. Kirby, B. B. et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nature Neurosci. 9, 1506–1511 (2006). In vivo confocal microscopy is used to determine the migration behaviour of OPCs in the neural tube of zebrafish. OPCs move as single cells and during migration continuously extend and retract filopodium-like processes, which possibly contact neighbouring OPCs to modulate their division and migration patterns.

    CAS  PubMed  Google Scholar 

  55. Miller, R. H. & Szigeti, V. Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures. Development 113, 353–362 (1991).

    CAS  PubMed  Google Scholar 

  56. Levison, S. W., Chuang, C., Abramson, B. J. & Goldman, J. E. The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development 119, 611–622 (1993).

    CAS  PubMed  Google Scholar 

  57. Zerlin, M., Levison, S. W. & Goldman, J. E. Early patterns of migration, morphogenesis, and intermediate filament expression of subventricular zone cells in the postnatal rat forebrain. J. Neurosci. 15, 7238–7249 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    CAS  PubMed  Google Scholar 

  60. Jacobsen, C. T. & Miller, R. H. Control of astrocyte migration in the developing cerebral cortex. Dev. Neurosci. 25, 207–216 (2003).

    CAS  PubMed  Google Scholar 

  61. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

    CAS  Google Scholar 

  62. Furnari, F. B. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007).

    CAS  PubMed  Google Scholar 

  63. Read, R. D., Cavenee, W. K., Furnari, F. B. & Thomas, J. B. A Drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 5, e1000374 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Schmidt, H. et al. The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev. Biol. 189, 186–204 (1997).

    CAS  PubMed  Google Scholar 

  65. Bossing, T., Udolph, G., Doe, C. Q. & Technau, G. M. The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64 (1996).

    CAS  PubMed  Google Scholar 

  66. Schmid, A., Chiba, A. & Doe, C. Q. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126, 4653–4689 (1999).

    CAS  PubMed  Google Scholar 

  67. Klambt, C., Jacobs, J. R. & Goodman, C. S. The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell 64, 801–815 (1991).

    CAS  PubMed  Google Scholar 

  68. Van De Bor, V. & Giangrande, A. glide/gcm: at the crossroads between neurons and glia. Curr. Opin. Genet. Dev. 12, 465–472 (2002).

    CAS  PubMed  Google Scholar 

  69. Kinrade, E. F., Brates, T., Tear, G. & Hidalgo, A. Roundabout signalling, cell contact and trophic support confine longitudinal glia and axons in the Drosophila CNS. Development 128, 207–216 (2001).

    CAS  PubMed  Google Scholar 

  70. Jacobs, J. R., Hiromi, Y., Patel, N. H. & Goodman, C. S. Lineage, migration, and morphogenesis of longitudinal glia in the Drosophila CNS as revealed by a molecular lineage marker. Neuron 2, 1625–1631 (1989).

    CAS  PubMed  Google Scholar 

  71. Poeck, B., Fischer, S., Gunning, D., Zipursky, S. L. & Salecker, I. Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron 29, 99–113 (2001).

    CAS  PubMed  Google Scholar 

  72. Aigouy, B., Van de Bor, V., Boeglin, M. & Giangrande, A. Time-lapse and cell ablation reveal the role of cell interactions in fly glia migration and proliferation. Development 131, 5127–5138 (2004). Introduces the peripheral nerve and its attached glial cells as a model to follow the migration of glial chains in vivo in the intact animal. Using the MARCM (mosaic analysis with a repressible cell marker) technique, the authors reach a single-cell resolution and define the role of neuronal–glial and glial–glial interaction in controlling cell migration.

    PubMed  Google Scholar 

  73. Cafferty, P., Xie, X., Browne, K. & Auld, V. J. Live imaging of glial cell migration in the Drosophila eye imaginal disc. J. Vis. Exp. 9 Jul 2009 (doi:10.3791/1155).

  74. Bhattacharyya, A., Brackenbury, R. & Ratner, N. Axons arrest the migration of Schwann cell precursors. Development 120, 1411–1420 (1994).

    CAS  PubMed  Google Scholar 

  75. Birchmeier, C. & Nave, K. A. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56, 1491–1497 (2008).

    PubMed  Google Scholar 

  76. Lai, C. Peripheral glia: Schwann cells in motion. Curr. Biol. 15, R332–R334 (2005).

    CAS  PubMed  Google Scholar 

  77. Gilmour, D. T., Maischein, H. M. & Nusslein-Volhard, C. Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34, 577–588 (2002). Uses in vivo imaging techniques to follow the migration of peripheral glial cells and their target axons in transgenic zebrafish lines. Beautifully demonstrates that axons provide instructive cues to control glial guidance.

    CAS  PubMed  Google Scholar 

  78. Kucenas, S. et al. CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nature Neurosci. 11, 143–151 (2008). Using time-lapse imaging in zebrafish, the authors show that perineurial glial cells covering the motor nerves are born in the CNS. The perineurial glia have barrier and guidance functions at motor axon exit points and promote motor nerve ensheathment by Schwann cells.

    CAS  PubMed  Google Scholar 

  79. Sepp, K. J., Schulte, J. & Auld, V. J. Developmental dynamics of peripheral glia in Drosophila melanogaster. Glia 30, 122–133 (2000).

    CAS  PubMed  Google Scholar 

  80. Sepp, K. J., Schulte, J. & Auld, V. J. Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev. Biol. 238, 47–63 (2001).

    CAS  PubMed  Google Scholar 

  81. Pielage, J., Kippert, A., Zhu, M. & Klambt, C. The Drosophila transmembrane protein Fear-of-intimacy controls glial cell migration. Dev. Biol. 275, 245–257 (2004).

    CAS  PubMed  Google Scholar 

  82. Sepp, K. J. & Auld, V. J. RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development 130, 1825–1835 (2003).

    CAS  PubMed  Google Scholar 

  83. Edenfeld, G. et al. Notch and Numb are required for normal migration of peripheral glia in Drosophila. Dev. Biol. 301, 27–37 (2007).

    CAS  PubMed  Google Scholar 

  84. Affolter, M. & Caussinus, E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135, 2055–2064 (2008).

    CAS  PubMed  Google Scholar 

  85. Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18, 1727–1734 (2008).

    CAS  PubMed  Google Scholar 

  86. Giangrande, A. Glia in the fly wing are clonally related to epithelial cells and use the nerve as a pathway for migration. Development 120, 523–534 (1994).

    Google Scholar 

  87. Aigouy, B., Lepelletier, L. & Giangrande, A. Glial chain migration requires pioneer cells. J. Neurosci. 28, 11635–11641 (2008). Cell ablation experiments and in vivo imaging demonstrate that tip cells guide glial cell chain migration in developing wing nerves. The tip cells generate long cell processes that influence the migration of follower cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Copenhaver, P. F. & Taghert, P. H. Origins of the insect enteric nervous system: differentiation of the enteric ganglia from a neurogenic epithelium. Development 113, 1115–1132 (1991).

    CAS  PubMed  Google Scholar 

  89. Copenhaver, P. F. & Taghert, P. H. Development of the enteric nervous system in the moth. II. Stereotyped cell migration precedes the differentiation of embryonic neurons. Dev. Biol. 131, 85–101 (1989).

    CAS  PubMed  Google Scholar 

  90. Wright, J. W. & Copenhaver, P. F. Different isoforms of fasciclin II play distinct roles in the guidance of neuronal migration during insect embryogenesis. Dev. Biol. 225, 59–78 (2000).

    CAS  PubMed  Google Scholar 

  91. Rossler, W., Oland, L. A., Higgins, M. R., Hildebrand, J. G. & Tolbert, L. P. Development of a glia-rich axon-sorting zone in the olfactory pathway of the moth Manduca sexta. J. Neurosci. 19, 9865–9877 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tucker, E. S. & Tolbert, L. P. Reciprocal interactions between olfactory receptor axons and olfactory nerve glia cultured from the developing moth Manduca sexta. Dev. Biol. 260, 9–30 (2003).

    CAS  PubMed  Google Scholar 

  93. Sen, A., Shetty, C., Jhaveri, D. & Rodrigues, V. Distinct types of glial cells populate the Drosophila antenna. BMC Dev. Biol. 5, 25 (2005).

    PubMed  PubMed Central  Google Scholar 

  94. Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nature Rev. Mol. Cell Biol. 9, 730–736 (2008).

    CAS  Google Scholar 

  95. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  96. Weake, V. M. et al. SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. EMBO J. 27, 394–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Baker, S. P. & Grant, P. A. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26, 5329–5340 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Etienne-Manneville, S. Polarity proteins in migration and invasion. Oncogene 27, 6970–6980 (2008).

    CAS  PubMed  Google Scholar 

  99. Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    CAS  PubMed  Google Scholar 

  100. Armstrong, R. C., Harvath, L. & Dubois-Dalcq, M. E. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J. Neurosci. Res. 27, 400–407 (1990).

    CAS  PubMed  Google Scholar 

  101. Bribian, A., Barallobre, M. J., Soussi-Yanicostas, N. & de Castro, F. Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve. Mol. Cell Neurosci. 33, 2–14 (2006).

    CAS  PubMed  Google Scholar 

  102. Osterhout, D. J. et al. Transplanted oligodendrocyte progenitor cells expressing a dominant-negative FGF receptor transgene fail to migrate in vivo. J. Neurosci. 17, 9122–9132 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Finzsch, M., Stolt, C. C., Lommes, P. & Wegner, M. Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor α expression. Development 135, 637–646 (2008).

    CAS  PubMed  Google Scholar 

  104. Takenawa, T. & Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nature Rev. Mol. Cell Biol. 8, 37–48 (2007).

    CAS  Google Scholar 

  105. Miyamoto, Y., Yamauchi, J. & Tanoue, A. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J. Neurosci. 28, 8326–8337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Eto, K. et al. The WAVE2/Abi1 complex differentially regulates megakaryocyte development and spreading: implications for platelet biogenesis and spreading machinery. Blood 110, 3637–3647 (2007).

    CAS  PubMed  Google Scholar 

  107. Garcion, E., Faissner, A. & ffrench-Constant, C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128, 2485–2496 (2001).

    CAS  PubMed  Google Scholar 

  108. Milner, R., Edwards, G., Streuli, C. & Ffrench-Constant, C. A role in migration for the αvβ1 integrin expressed on oligodendrocyte precursors. J. Neurosci. 16, 7240–7252 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rajasekharan, S. et al. Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development 136, 415–426 (2009).

    CAS  PubMed  Google Scholar 

  110. Umemori, H., Sato, S., Yagi, T., Aizawa, S. & Yamamoto, T. Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367, 572–576 (1994).

    CAS  PubMed  Google Scholar 

  111. Miyamoto, Y. et al. Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin. J. Cell Sci. 120, 4355–4366 (2007).

    CAS  PubMed  Google Scholar 

  112. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    CAS  PubMed  Google Scholar 

  113. Jarjour, A. A. et al. Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord. J. Neurosci. 23, 3735–3744 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tsai, H. H., Macklin, W. B. & Miller, R. H. Netrin-1 is required for the normal development of spinal cord oligodendrocytes. J. Neurosci. 26, 1913–1922 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tsai, H. H., Tessier-Lavigne, M. & Miller, R. H. Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal. Development 130, 2095–2105 (2003).

    CAS  PubMed  Google Scholar 

  116. Spassky, N. et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci. 22, 5992–6004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sugimoto, Y. et al. Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 128, 3321–3330 (2001).

    CAS  PubMed  Google Scholar 

  118. Liu, G. et al. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc. Natl Acad. Sci. USA 106, 2951–2956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ly, A. et al. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell 133, 1241–1254 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Andrews, G. L. et al. Dscam guides embryonic axons by Netrin-dependent and -independent functions. Development 135, 3839–3848 (2008).

    CAS  PubMed  Google Scholar 

  121. Williams, A. et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130, 2554–2565 (2007).

    PubMed  Google Scholar 

  122. Tsai, H. H. et al. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110, 373–383 (2002).

    CAS  PubMed  Google Scholar 

  123. Dziembowska, M. et al. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50, 258–269 (2005).

    CAS  PubMed  Google Scholar 

  124. Cohen, R. I. Exploring oligodendrocyte guidance: 'to boldly go where no cell has gone before'. Cell. Mol. Life Sci. 62, 505–510 (2005).

    CAS  PubMed  Google Scholar 

  125. Prestoz, L. et al. Control of axonophilic migration of oligodendrocyte precursor cells by Eph–ephrin interaction. Neuron Glia Biol. 1, 73–83 (2004).

    PubMed  Google Scholar 

  126. Osmani, N., Vitale, N., Borg, J. P. & Etienne-Manneville, S. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr. Biol. 16, 2395–2405 (2006).

    CAS  PubMed  Google Scholar 

  127. Franzdottir, S. R. et al. Switch in FGF signalling initiates glial differentiation in the Drosophila eye. Nature 460, 758–761 (2009). Shows that the sequential use of the FGF receptor controls migration and differentiation of the D. melanogaster eye disc glial cells. Migration and differentiation are accompanied by a differential use of FGF8-like ligands and distinct downstream signalling components.

    CAS  PubMed  Google Scholar 

  128. Learte, A. R., Forero, M. G. & Hidalgo, A. Gliatrophic and gliatropic roles of PVF/PVR signaling during axon guidance. Glia 56, 164–176 (2008).

    CAS  PubMed  Google Scholar 

  129. Bogdan, S. & Klambt, C. Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130, 4427–4437 (2003).

    CAS  PubMed  Google Scholar 

  130. Freeman, M. R., Delrow, J., Kim, J., Johnson, E. & Doe, C. Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).

    CAS  PubMed  Google Scholar 

  131. Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    CAS  PubMed  Google Scholar 

  132. Aman, A. & Piotrowski, T. Wnt/β-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev. Cell 15, 749–761 (2008).

    CAS  PubMed  Google Scholar 

  133. Lecaudey, V., Cakan-Akdogan, G., Norton, W. H. & Gilmour, D. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135, 2695–2705 (2008).

    CAS  PubMed  Google Scholar 

  134. Nechiporuk, A. & Raible, D. W. FGF-dependent mechanosensory organ patterning in zebrafish. Science 320, 1774–1777 (2008).

    CAS  PubMed  Google Scholar 

  135. Brosamle, C. & Halpern, M. E. Characterization of myelination in the developing zebrafish. Glia 39, 47–57 (2002).

    PubMed  Google Scholar 

  136. Ghysen, A. & Dambly-Chaudiere, C. Development of the zebrafish lateral line. Curr. Opin. Neurobiol. 14, 67–73 (2004).

    CAS  PubMed  Google Scholar 

  137. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    CAS  PubMed  Google Scholar 

  138. Zecchini, V., Brennan, K. & Martinez-Arias, A. An activity of Notch regulates JNK signalling and affects dorsal closure in Drosophila. Curr. Biol. 9, 460–469 (1999).

    CAS  PubMed  Google Scholar 

  139. Kamiguchi, H. & Yoshihara, F. The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones. J. Neurosci. 21, 9194–9203 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, C., Rougon, G. & Kiss, J. Z. Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J. Neurosci. 14, 4446–4457 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Paratcha, G., Ledda, F. & Ibanez, C. F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113, 867–879 (2003).

    CAS  PubMed  Google Scholar 

  142. Boyle, M., Nighorn, A. & Thomas, J. B. Drosophila Eph receptor guides specific axon branches of mushroom body neurons. Development 133, 1845–1854 (2006).

    CAS  PubMed  Google Scholar 

  143. Bossing, T. & Brand, A. H. Dephrin, a transmembrane ephrin with a unique structure, prevents interneuronal axons from exiting the Drosophila embryonic CNS. Development 129, 4205–4218 (2002).

    CAS  PubMed  Google Scholar 

  144. Hummel, T., Schimmelpfeng, K. & Klambt, C. Commissure formation in the embryonic CNS of Drosophila. Dev. Biol. 209, 381–398 (1999).

    CAS  PubMed  Google Scholar 

  145. Van Doren, M. et al. fear of intimacy encodes a novel transmembrane protein required for gonad morphogenesis in Drosophila. Development 130, 2355–2364 (2003).

    CAS  PubMed  Google Scholar 

  146. Rangarajan, R., Courvoisier, H. & Gaul, U. Dpp and Hedgehog mediate neuron–glia interactions in Drosophila eye development by promoting the proliferation and motility of subretinal glia. Mech. Dev. 108, 93–103 (2001).

    CAS  PubMed  Google Scholar 

  147. Fu, M., Lui, V. C., Sham, M. H., Pachnis, V. & Tam, P. K. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J. Cell Biol. 166, 673–684 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hummel, T., Attix, S., Gunning, D. & Zipursky, S. L. Temporal control of glial cell migration in the Drosophila eye requires gilgamesh, hedgehog, and eye specification genes. Neuron 33, 193–203 (2002).

    CAS  PubMed  Google Scholar 

  149. Silies, M., Edenfeld, G., Engelen, D., Stork, T. & Klämbt, C. Development of the peripheral glial cells in Drosophila. Neuron Glia Biol. 3, 35–43 (2007).

    PubMed  Google Scholar 

  150. Murakami, S. et al. Focal adhesion kinase controls morphogenesis of the Drosophila optic stalk. Development 134, 1539–1548 (2007).

    CAS  PubMed  Google Scholar 

  151. Knox, A. L. & Brown, N. H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285–1288 (2002).

    CAS  PubMed  Google Scholar 

  152. Kooistra, M. R., Dube, N. & Bos, J. L. Rap1: a key regulator in cell–cell junction formation. J. Cell Sci. 120, 17–22 (2007).

    CAS  PubMed  Google Scholar 

  153. York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).

    CAS  PubMed  Google Scholar 

  154. Mason, J. M., Morrison, D. J., Basson, M. A. & Licht, J. D. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 16, 45–54 (2006).

    CAS  PubMed  Google Scholar 

  155. Michailov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    CAS  PubMed  Google Scholar 

  156. Lyons, D. A. et al. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr. Biol. 15, 513–524 (2005). Forward genetic screens identified mutations in the zebrafish erbb2 and erbb3 genes as being required for Schwann cell migration. Pharmacological inhibition of the Egf receptor demonstrated a continous need of ErbB function for proliferation as well as glial migration.

    CAS  PubMed  Google Scholar 

  157. Garratt, A. N., Voiculescu, O., Topilko, P., Charnay, P. & Birchmeier, C. A dual role of erbB2 in myelination and in expansion of the schwann cell precursor pool. J. Cell Biol. 148, 1035–1046 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Leone, D. P. et al. Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell. Neurosci. 22, 430–440 (2003).

    CAS  PubMed  Google Scholar 

  159. Mori, T. et al. Inducible gene deletion in astroglia and radial glia — a valuable tool for functional and lineage analysis. Glia 54, 21–34 (2006).

    PubMed  Google Scholar 

  160. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    CAS  PubMed  Google Scholar 

  161. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  PubMed  Google Scholar 

  162. Pogoda, H. M. et al. A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Dev. Biol. 298, 118–131 (2006).

    CAS  PubMed  Google Scholar 

  163. Matthews, K. A., Kaufman, T. C. & Gelbart, W. M. Research resources for Drosophila: the expanding universe. Nature Rev. Genet. 6, 179–193 (2005).

    CAS  PubMed  Google Scholar 

  164. Venken, K. J. & Bellen, H. J. Transgenesis upgrades for Drosophila melanogaster. Development 134, 3571–3584 (2007).

    CAS  PubMed  Google Scholar 

  165. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    CAS  PubMed  Google Scholar 

  166. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol. 10, 1027–1038 (2008).

    CAS  PubMed  Google Scholar 

  167. Choi, K. W. & Benzer, S. Migration of glia along photoreceptor axons in the developing Drosophila eye. Neuron 12, 423–431 (1994). First paper demonstrating that, in the developing D. melanogaster eye, glial cells originate from CNS progenitor cells and migrate onto the eye disc concomitant to differentiation of the photoreceptor neurons.

    CAS  PubMed  Google Scholar 

  168. Rangarajan, R., Gong, Q. & Gaul, U. Migration and function of glia in the developing Drosophila eye. Development 126, 3285–3292 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful for many discussions with and excellent comments from B. Zalc, E. Raz, M. Silies, H. Aberle, S. Bogdan, A. Püschel, W. Paulus and T. Hummel. Work in my laboratory is supported by the Deutsche Forschungsgemeinschaft, the European Commission and the German Israeli Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Christian Klämbt's homepage

Glossary

Enhancer trap

A technique in which mobile genetic elements carrying a neutral promoter and a reporter gene are randomly inserted in the genome. The expression of the reporter indicates the presence of flanking enhancer elements.

Tip cell

A cell leading a group of migratory cells. Tip cells generally have extensive filopodia that allow them to explore their environment.

Clonal analysis

A technique in which genetic mosaic animals are generated, either by the transplantation of cells of a specific genotype into a host organism or by mitotic recombination induced in a heterozygous host. Clonal analysis is used to determine the cell autonomy of a particular gene function.

Neural crest

Groups of cells that migrate from the neural tube to the periphery, where they give rise to a wide variety of cell types.

Lateral line

In fish, the lateral line contains mechanosensory organs (neuromasts) and is located along the entire length of the body axis.

Ventricular zone

An area in the vertebrate CNS, located next to the ventricles, which contains progenitor cells that give rise to neurons and glia.

Floor plate

The ventral midline structure of the CNS. It has a role in neuronal patterning and axon guidance.

Chemorepellent

A molecule that stimulates an aversive reaction by migrating cells or growth cones.

Dorsal closure

The developmental process during D. melanogaster embryogenesis by which lateral epidermal cells move over the forming gut at the dorsal side. The process resembles wound healing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klämbt, C. Modes and regulation of glial migration in vertebrates and invertebrates. Nat Rev Neurosci 10, 769–779 (2009). https://doi.org/10.1038/nrn2720

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing