Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Avian brains and a new understanding of vertebrate brain evolution

Abstract

We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain — in particular the neocortex-like cognitive functions of the avian pallium — requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Avian and mammalian brain relationships.
Figure 2: Simplified modern view of vertebrate evolution.
Figure 3: Auditory and vocal pathways of the songbird brain within the context of the new consensus view of avian brain organization.

Similar content being viewed by others

References

  1. Edinger, L. (Translation from German) Investigations on the Comparative Anatomy of the Brain Volumes 1–5 (Moritz Diesterweg, Frankfurt/Main, 1888–1903).

    Google Scholar 

  2. Darwin, C. The Origin of Species (Murray, 1859).

    Google Scholar 

  3. Edinger, L. The Anatomy of the Central Nervous System of Man and of Vertebrates in General 5th edn (F. A. Davis Company, Philadelphia, 1896).

    Google Scholar 

  4. Edinger, L. The relations of comparative anatomy to comparative psychology. Comp. Neurol. Psychol. 18, 437–457 (1908).

    Article  Google Scholar 

  5. Northcutt, R. G. Changing views of brain evolution. Brain Res. Bull. 55, 663–674 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ariëns Kappers, C. The phylogenesis of the paleo-cortex and archi-cortex compared with the evolution of the visual neo-cortex. Arch. Neurol. Psychiatry 4, 161–173 (1909).

    Google Scholar 

  7. Ariëns Kappers, C. The ontogenetic development of the corpus striatum in birds and a comparison with mammals and man. Proc. Kon. Akad. v. Wetens. te Amsterdam 26, 135–158 (1922).

    Google Scholar 

  8. Ariëns Kappers, C. Three lectures on neurobiotaxis and other subjects delivered at the University of Copenhagen (Leven and Munksgaard, Copenhagen, 1928).

    Google Scholar 

  9. Edinger, L., Wallenberg, A. & Holmes, G. M. Untersuchungen über die vergleichende Anatomie des Gehirns. Das Vorderhirn der Vögel. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft 20, 343–426 (1903).

    Google Scholar 

  10. Rose, M. Über die cytoarchitektonische Gliederung des Vorderhirns der Vogel. J. f. Psychol. Neurol. 21 (suppl. 1), 278–352 (1914).

    Google Scholar 

  11. Holmgren, N. Points of view concerning forebrain morphology in higher vertebrates. Acta. Zool. Stockh. 6, 413–477 (1925).

    Article  Google Scholar 

  12. Kuhlenbeck, H. The ontogenetic development and phylogenetic significance of the cortex telencephali in the chick. J. Comp. Neurol. 69, 273–301 (1938).

    Article  Google Scholar 

  13. Elliot Smith, G. The term 'archipallium' - a disclaimer. Anatomischer Anzeiger 35, 429–430 (1910).

    Google Scholar 

  14. Ariëns Kappers, C. U., Huber, C. G. & Crosby, E. C. Comparative Anatomy of the Nervous System of Vertebrates, Including Man (Hafner, New York, 1936).

    Google Scholar 

  15. Parent, A. & Olivier, A. Comparative histochemical study of the corpus striatum. J. Hirnforsch. 12, 73–81 (1970).

    CAS  PubMed  Google Scholar 

  16. Karten, H. J. in Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System (ed. Pertras, J.) 164–179 (1969).

    Google Scholar 

  17. Karten, H. J. & Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia) (Johns Hopkins Univ. Press, Baltimore, 1967).

    Google Scholar 

  18. Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system I. Demonstration of monoamines in cell bodies of brainstem neurons. Acta Physiol. Scand. 62, 1–55 (1964).

    Google Scholar 

  19. Juorio, A. V. & Vogt, M. Monoamines and their metabolites in the avian brain. J. Physiol. 189, 489–518 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karten, H. J. & Dubbeldam, J. L. The organization and projections of the paleostriatal complex in the pigeon (Columba livia). J. Comp. Neurol. 148, 61–90 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Graybiel, A. M. Neuropeptides in the basal ganglia. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 64, 135–161 (1986).

    CAS  PubMed  Google Scholar 

  22. Smeets, W. J. Comparative aspects of basal forebrain organization in vertebrates. Eur. J. Morphol. 30, 23–36 (1992).

    CAS  PubMed  Google Scholar 

  23. Steiner, H. & Gerfen, C. R. Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Reiner, A., Medina, L. & Veenman, C. L. Structural and functional evolution of the basal ganglia in vertebrates. Brain Res. Brain Res. Rev. 28, 235–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Jiao, Y. et al. Identification of the anterior nucleus of the ansa lenticularis in birds as the homologue of the mammalian subthalamic nucleus. J. Neurosci. 20, 6998–7010 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Graybiel, A. M. The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23, 459–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Perkel, D. & Farries, M. Complementary 'bottom-up' and 'top-down' approaches to basal ganglia function. Curr. Opin. Neurobiol. 10, 725–731 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Cobos, I., Shimamura, K., Rubenstein, J. L., Martinez, S. & Puelles, L. Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev. Biol. 239, 46–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Redies, C., Medina, L. & Puelles, L. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. J. Comp. Neurol. 438, 253–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Marín, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).

    Article  CAS  Google Scholar 

  32. Veenman, C. L. Pigeon basal ganglia: insights into the neuroanatomy underlying telencephalic sensorimotor processes in birds. Eur. J. Morphol. 35, 220–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, Z. & Reiner, A. Localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick. J. Chem. Neuroanat. 19, 211–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Li, X. -C. & Jarvis, E. Sensory- and motor-driven BDNF expression in a vocal communication system. Soc. Neurosci. Abstr. 538.8 (2001).

  35. Reiner, A., Meade, C. A., Cuthberston, S. L., Laverghetta, A. & Bottjer, S. W. An immunohistochemical and pathway tracing study of the striatopallidal organization of Area X in the zebra finch. J. Comp. Neurol. 469, 239–261 (2004).

    Article  PubMed  Google Scholar 

  36. Wada, K., Sakaguchi, H., Jarvis, E. D. & Hagiwara, M. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J. Comp. Neurol. 476, 44–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brauth, S. E. & Kitt, C. A. The paleostriatal system of Caiman crocodilus. J. Comp. Neurol. 189, 437–465 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Brauth, S. E., Reiner, A., Kitt, C. A. & Karten, H. J. The substance P-containing striatotegmental path in reptiles: an immunohistochemical study. J. Comp. Neurol. 219, 305–327 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Reiner, A., Brauth, S. E. & Karten, H. J. Evolution of the amniote basal ganglia. Trends Neurosci. 7, 320–325 (1984).

    Article  Google Scholar 

  40. Smeets, W. J. A. J. in Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates (ed. Smeets, W. J. A. J.) 103–133 (Cambridge Univ. Press, Cambridge, England, 1994).

    Google Scholar 

  41. Swanson, L. What is the brain? Trends Neurosci. 23, 519–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Reblet, C. et al. Neuroepithelial origin of the insular and endopiriform parts of the claustrum. Brain Res. Bull. 57, 495–497 (2002).

    Article  PubMed  Google Scholar 

  43. Zeier, H. & Karten, H. J. The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res. 31, 313–326 (1971).

    Article  CAS  PubMed  Google Scholar 

  44. Karten, H. J. & Shimizu, T. The origins of neocortex: connections and lamination as distinct events in evolution. J. Cogn. Neurosci. 1, 291–301 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Vates, G. E., Broome, B. M., Mello, C. V. & Nottebohm, F. Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J. Comp. Neurol. 366, 613–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Wild, J. M. The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res. 759, 122–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Shimizu, T. & Hodos, W. Reversal learning in pigeons: effects of selective lesions of the Wulst. Behav. Neurosci. 103, 262–272 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Mello, C. V. & Clayton, D. F. Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J. Neurosci. 14, 6652–6666 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jarvis, E. D., Mello, C. V. & Nottebohm, F. Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learn. Mem. 2, 62–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Wild, J. M., Reinke, H. & Farabaugh, S. M. A non-thalamic pathway contributes to a whole body map in the brain of the budgerigar. Brain Res. 755, 137–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Laverghetta, A. V. & Shimizu, T. Visual discrimination in the pigeon (Columba livia): effects of selective lesions of the nucleus rotundus. Neuroreport 10, 981–985 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Vicario, D. S. Organization of the zebra finch song control system: II. Functional organization of outputs from nucleus robustus archistriatalis. J. Comp. Neurol. 309, 486–494 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Wild, J. M. Descending projections of the songbird nucleus robustus archistriatalis. J. Comp. Neurol. 338, 225–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Wild, J. M. & Williams, M. N. Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. J. Comp. Neurol. 416, 429–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976).

    Article  CAS  PubMed  Google Scholar 

  56. Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Shimizu, T. & Karten, H. J. in The Neocortex (ed. Finlay, B. L.) 75–86 (Plenum, New York, 1990).

    Google Scholar 

  58. Scharff, C. & Nottebohm, F. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11, 2896–2913 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Güntürkün, O. in Neural and Behavioral Plasticity (ed. Andrew, R. J.) 92–105 (Oxford Univ. Press, Oxford, 1991).

    Book  Google Scholar 

  60. Wild, J. M., Karten, H. J. & Frost, B. J. Connections of the auditory forebrain in the pigeon (Columba livia). J. Comp. Neurol. 337, 32–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Butler, A. B. The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res. Brain Res. Rev. 19, 66–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Shimizu, T., Cox, K. & Karten, H. J. Intratelencephalic projections of the visual Wulst in pigeons (Columba livia). J. Comp. Neurol. 359, 551–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Kröner, S. & Güntürkün, O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro- and anterograde pathway tracing study. J. Comp. Neurol. 407, 228–260 (1999).

    Article  PubMed  Google Scholar 

  64. Shimizu, T. & Bowers, A. N. Visual circuits of the avian telencephalon: evolutionary implications. Behav. Brain Res. 98, 183–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Brainard, M. & Doupe, A. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404, 762–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Knudsen, E. I. Instructed learning in the auditory localization pathway of the barn owl. Nature 417, 322–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Mello, C. V. Mapping vocal communication pathways in birds with inducible gene expression. J. Comp. Physiol. A 188, 943–959 (2002).

    Article  CAS  Google Scholar 

  68. Smith-Fernandez, A. S., Pieau, C., Repérant, J., Boncinelli, E. & Wassef, M. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125, 2099–2111 (1998).

    Google Scholar 

  69. Medina, L. & Reiner, A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci. 23, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kuenzel, W. J. & Masson, M. A Stereotaxic Atlas of the Brain of the Chick (Gallus domesticus) (The Johns Hopkins Univ. Press, Baltimore, 1988).

    Google Scholar 

  71. Karten, H. J. Homology and evolutionary origins of the 'neocortex'. Brain Behav. Evol. 38, 264–272 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Mello, C. V. & Clayton, D. F. Differential induction of the ZENK gene in the avian forebrain and song control circuit after metrazole-induced depolarization. J. Neurobiol. 26, 145–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Dugas-Ford, J. & Ragsdale, C. 23rd Annual J. B. Johnston Club Meeting and 15th Annual Karger Workshop 2003. Brain Behav. Evol. 62, 168–174 (2003).

    Article  Google Scholar 

  74. Bruce, L. L. & Neary, T. J. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav. Evol. 46, 224–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Striedter, G. F. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49, 179–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Bruce, L. L., Kornblum, H. I. & Seroogy, K. B. Comparison of thalamic populations in mammals and birds: expression of ErbB4 mRNA. Brain Res. Bull. 57, 455–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Martínez-García, F., Martínez-Marcos, A. & Lanuza, E. The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Res. Bull. 57, 463–469 (2002).

    Article  PubMed  Google Scholar 

  78. Haesler, S. et al. FoxP2 expression in avian vocal learners and non-learners. J. Neurosci. 24, 3164–3175 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Butler, A. B., Molnár, Z. & Manger, P. R. Apparent absence of claustrum in monotremes: implications for forebrain evolution in amniotes. Brain Behav. Evol. 60, 230–240 (2002).

    Article  PubMed  Google Scholar 

  81. Ashwell, K. W., Hardman, C. & Paxinos, G. The claustrum is not missing from all monotreme brains. Brain Behav. Evol. 64, 223–241 (2004).

    Article  PubMed  Google Scholar 

  82. Reiner, A. et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377–414 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Reiner, A. et al. The Avian Brain Nomenclature Forum: a new century in comparative neuroanatomy. J. Comp. Neurol. 473, E1–E6 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reiner, A. J. A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. Novartis Found. Symp. 228, 83–102; discussion 102–113 (2000).

    CAS  PubMed  Google Scholar 

  85. Carroll, R. L. in Vertebrate Paleontology and Evolution 1–13 (W. H. Freeman, New York, 1988).

    Google Scholar 

  86. Evans, S. E. in Evolutionary Developmental Biology of the Cerebral Cortex (eds Bock, G. R. & Cardew, G.) 109–113 (John Wiley & Sons, Chichester, 2000).

    Google Scholar 

  87. Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Northcutt, R. G. Visual pathways in elasmobranchs: organization and phylogenetic implications. J. Exp. Zool. Suppl. 5, 97–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki, W. A. & Clayton, N. S. The hippocampus and memory: a comparative and ethological perspective. Curr. Opin. Neurobiol. 10, 768–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Rodríguez, F. et al. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res. Bull. 57, 499–503 (2002).

    Article  PubMed  Google Scholar 

  91. Marler, P. Characteristics of some animals calls. Nature 176, 6–8 (1955).

    Article  Google Scholar 

  92. Thorpe, W. H. The learning of song patterns by birds, with special reference to the song of the chaffinch, Fringilla coelebs. Ibis 100, 535–570 (1958).

    Article  Google Scholar 

  93. von Fersen, L. & Delius, J. D. Long-term retention of many visual patterns by pigeons. Ethology 82, 141–155 (1989).

    Article  Google Scholar 

  94. Lubow, R. E. High-order concept formation in the pigeon. J. Exp. Anal. Behav. 21, 475–483 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Watanabe, S., Sakamoto, J. & Wakita, M. Pigeons' discrimination of paintings by Monet and Picasso. J. Exp. Anal. Behav. 63, 165–174 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lubinski, D. & MacCorquodale, K. 'Symbolic communication' between two pigeons (Columba livia) without unconditioned reinforcement. J. Comp. Psychol. 98, 372–380 (1984).

    Article  Google Scholar 

  97. von Fersen, L., Wynne, C. D. L., Delius, J. D. & Staddon, J. E. R. Transitive inference formation in pigeons. J. Exp. Psychol. Anim. Behav. Process. 17, 334–341 (1992).

    Article  Google Scholar 

  98. Lanza, R. P., Starr, J. & Skinner, B. F. 'Lying' in the pigeon. J. Exp. Anal. Behav. 38, 201–203 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Munn, C. Birds that cry 'wolf'. Nature 319, 143–145 (1986).

    Article  Google Scholar 

  100. Weir, A. A., Chappell, J. & Kacelnik, A. Shaping of hooks in New Caledonian crows. Science 297, 981 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Hunt, G. R. & Gray, R. D. Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proc. R. Soc. Lond. B 270, 867–874 (2003).

    Article  Google Scholar 

  102. Pollok, B., Prior, H. & Güntürkün, O. Development of object-permanence in the food-storing magpie (Pica pica). J. Comp. Psychol. 114, 148–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Emery, N. J. & Clayton, N. S. Effects of experience and social context on prospective caching strategies by scrub jays. Nature 414, 443–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Jarvis, E. D. et al. Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406, 628–632 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jarvis, E. D. Learned birdsong and the neurobiology of human language. Ann. NY Acad. Sci. 1016, 749–777 (2004).

    Article  PubMed  Google Scholar 

  107. Pepperberg, I. in The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots 96–167 (Harvard Univ. Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  108. Pepperberg, I. M. & Shive, H. R. Simultaneous development of vocal and physical object combinations by a Grey Parrot (Psittacus erithacus): bottle caps, lids, and labels. J. Comp. Pyschol. 115, 376–384 (2001).

    Article  CAS  Google Scholar 

  109. Gazzaniga, M. S. (ed.) The New Cognitive Neurosciences (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  110. Delius, J. D. & Hollard, V. D. Orientation invariance of shape recognition in forebrain-lesioned pigeons. Behav. Brain Res. 23, 251–259 (1987).

    Article  CAS  PubMed  Google Scholar 

  111. Lavenex, P. B. Lesions in the budgerigar vocal control nucleus NLc affect production, but not memory, of English words and natural vocalizations. J. Comp. Neurol. 421, 437–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Van Essen, D. A tension-based theory of morphophogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Striedter, G. F. in Principles of Brain Evolution 345–361 (Sinuaer Associates, Massachusetts, 2004).

    Google Scholar 

  114. Bottjer, S. W. & Johnson, F. Circuits, hormones, and learning: vocal behavior in songbirds. J. Neurobiol. 33, 602–618 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This effort was supported by grants from the National Institutes of Health and National Science Foundation, and by the National Science Foundation Waterman Award to E.D.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich D. Jarvis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

BDNF

DLX1

DLX2

EAG2

EMX1

ENK

ER81

GluR1

mGluR2

NKX2.1

PAX6

ROR-β

SP

TBR1

ZENK

FURTHER INFORMATION

Avian Brain Nomenclature Exchange web site

Digital Anatomist Project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, E., Güntürkün, O., Bruce, L. et al. Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6, 151–159 (2005). https://doi.org/10.1038/nrn1606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing