Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What is an auditory object?

Abstract

Objects are the building blocks of experience, but what do we mean by an object? Increasingly, neuroscientists refer to 'auditory objects', yet it is not clear what properties these should possess, how they might be represented in the brain, or how they might relate to the more familiar objects of vision. The concept of an auditory object challenges our understanding of object perception. Here, we offer a critical perspective on the concept and its basis in the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of acoustic pattern that correspond to the sound /ma/.
Figure 2: A framework for models of auditory-object analysis.

Similar content being viewed by others

References

  1. Kant, I. Critique of Pure Reason, 2nd Edn (Palgrave Macmillan, London, 2003).

    Google Scholar 

  2. Russell, B. A History of Western Philosophy (Simon and Schuster, London, 1945).

    Google Scholar 

  3. Buell, T. N. & Hafter, E. R. Combination of binaural information across frequency bands. J. Acoust. Soc. Am. 90, 1894–1900 (1991).

    Article  CAS  Google Scholar 

  4. Carrell, T. D. & Opie, J. M. The effect of amplitude comodulation on auditory object formation in sentence perception. Percep. Psychophys. 52, 437–445 (1992).

    Article  CAS  Google Scholar 

  5. Woods, W. S. & Colburn, H. S. Test of a model of auditory object formation using intensity and interaural time difference discrimination. J. Acoust. Soc. Am. 91, 2894–2902 (1992).

    Article  CAS  Google Scholar 

  6. Grose, J. H. & Hall, J. W. Comodulation masking release: is comodulation sufficient? J. Acoust. Soc. Am. 93, 2896–2902 (1993).

    Article  CAS  Google Scholar 

  7. Gordon, P. C. Coherence masking protection in brief noise complexes: effects of temporal patterns. J. Acoust. Soc. Am. 102, 2276–2283 (1997).

    Article  CAS  Google Scholar 

  8. Jones, S. J. et al. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'? Electroencephalogr. Clin. Neurophysiol. 108, 131–142 (1998).

    Article  CAS  Google Scholar 

  9. Kubovy, M. & Van Valkenburg, D. Auditory and visual objects. Cognition 80, 97–126 (2001).

    Article  CAS  Google Scholar 

  10. Adams, R. B. & Janata, P. A comparison of neural circuits underlying auditory and visual object categorization. Neuroimage 16, 361–377 (2002).

    Article  Google Scholar 

  11. Schulte, M. et al. Different modes of pitch perception and learning-induced neuronal plasticity of the human auditory cortex. Neural Plasticity 9, 161–175 (2002).

    Article  Google Scholar 

  12. Atienza, M. et al. Effects of temporal encoding on auditory object formation: a mismatch negativity study. Cogn. Brain Res. 16, 359–371 (2003).

    Article  Google Scholar 

  13. Lancelot, C. et al. Effect of unilateral temporal lobe resection on short-term memory for auditory object and sound location. Ann. NY Acad. Sci. 999, 377–380 (2003).

    Article  Google Scholar 

  14. Laufer, I. & Pratt, H. The electrophysiological net response ('F-complex') to spatial fusion of speech elements forming an auditory object. Clin. Neurophysiol. 14, 818–834 (2003).

    Article  Google Scholar 

  15. Dyson, B. J. & Alain, C. Representation of concurrent acoustic objects in primary auditory cortex. J. Acoust. Soc. Am. 115, 280–288 (2004).

    Article  Google Scholar 

  16. Molholm, S. et al. Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study. Cereb. Cortex 14, 452–465 (2004).

    Article  Google Scholar 

  17. Pratt, H. et al. Auditory middle-latency components to fusion of speech elements forming an auditory object. Clin. Neurophysiol. 115, 1083–1089 (2004).

    Article  Google Scholar 

  18. Zatorre, R. J., Bouffard, M. & Belin, P. Sensitivity to auditory object features in human temporal neocortex. J. Neurosci. 24, 3637–3642 (2004).

    Article  CAS  Google Scholar 

  19. Husain, F. T., Tagamets, M. A., Fromm, S. J., Braun, A. R. & Horwitz, B. Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study. Neuroimage 21, 1701–1720 (2004).

    Article  CAS  Google Scholar 

  20. Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A. & Ward, B. D. Neural correlates of sensory and decision processes in auditory object identification. Nature Neurosci. 7, 295–301 (2004).

    Article  CAS  Google Scholar 

  21. Beauchamp, M. S., Lee, K. E., Argali, B. D. & Martin, A. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41, 809–823 (2004).

    Article  CAS  Google Scholar 

  22. McAdams, S. in Thinking in Sound: The Cognitive Psychology of Human Audition (eds McAdams, S. & Bigand, E.) 146–198 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  23. Patterson, R. D. et al. Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J. Acoust. Soc. Am. 98, 1890–1894 (1995).

    Article  CAS  Google Scholar 

  24. Shamma, S. On the role of space and time in auditory processing. Trends Cogn. Sci. 5, 340–348 (2001).

    Article  CAS  Google Scholar 

  25. American Standards Association. Acoustical Terminology SI. 1–1960. (American Standards Association, New York, 1960).

  26. Menon, V. et al. Neural correlates of timbre change in harmonic sounds. Neuroimage 17, 1742–1754 (2002).

    Article  CAS  Google Scholar 

  27. Bregman, A. S. Auditory Scene Analysis (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  28. Shamma, S. in The New Cognitive Neurosciences (ed. Gazzaniga, M.) 411–423 (MIT Press, Massachusetts, 1999).

    Google Scholar 

  29. Krumhansl, C. L. in Structure and Perception of Electroacoustic Sound and Music (eds Nielzen, S. & Olsson, O.) 43–53 (Excerpta Medica Vol. 846, Elsevier Science, Amsterdam, 1989).

    Google Scholar 

  30. McAdams, S. & Cunible, J. C. Perception of timbral analogies. Phil. Trans. R. Soc. Lond. B 336, 383–389 (1992).

    Article  CAS  Google Scholar 

  31. McAdams, S., Chaigne, A. & Roussarie, V. The psychomechanics of simulated sound sources: material properties of impacted bars. J. Acoust. Soc. Am. 115, 1306–1320 (2004).

    Article  Google Scholar 

  32. Samson, S., Zatorre, R. J. & Ramsay, J. O. Deficits of musical timbre perception after temporal-lobe lesion revealed with multidimensional scaling. Brain 125, 511–523 (2002).

    Article  Google Scholar 

  33. Griffiths, T. D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R. D. Encoding of the temporal regularity of sound in the human brainstem. Nature Neurosci. 4, 633–637 (2001).

    Article  CAS  Google Scholar 

  34. Green, D. M., Kidd, G. & Picardi, M. C. Successive versus simultaneous comparison in auditory intensity discrimination. J. Acoust. Soc. Am. 73, 639–643 (1983).

    Article  CAS  Google Scholar 

  35. Drennan, W. R. & Watson, C. S. Sources of variation in profile analysis. I. Individual differences and extended training. J. Acoust. Soc. Am. 110, 2491–2497 (2001).

    Article  CAS  Google Scholar 

  36. Joris, P. X., Schreiner, C. E. & Rees, A. Neural processing of amplitude-modulated sounds. Physiol. Rev. 84, 541–577 (2004).

    Article  CAS  Google Scholar 

  37. Schnupp, J. W. H., Mrsic-Flogel, T. D. & King, A. J. Linear processing of spatial cues in primary auditory cortex. Nature 414, 200–204 (2001).

    Article  CAS  Google Scholar 

  38. Nelken, I., Rotman, Y. & Bar Yosef, O. Responses of auditory neurons to structural features of natural sounds. Nature 397, 154–157 (1999).

    Article  CAS  Google Scholar 

  39. Linden, J. F., Liu, R. C., Sahani, M., Schreiner, C. E. & Merzenich, M. M. Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J. Neurophysiol. 90, 2660–2675 (2003).

    Article  Google Scholar 

  40. Wang, X. On cortical coding of vocal communication sounds in primates. Proc. Natl Acad. Sci. USA 97, 11843–11849 (2000).

    Article  CAS  Google Scholar 

  41. Griffiths, T. D. & Warren, J. D. The planum temporale as a computational hub. Trends Neurosci. 25, 348–353 (2002).

    Article  CAS  Google Scholar 

  42. Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P. & Winkler, I. 'Primitive intelligence' in the auditory cortex. Trends Neurosci. 24, 283–288 (2001).

    Article  Google Scholar 

  43. Riesenhuber, M. & Poggio, T. Models of object recognition. Nature Neurosci. 3, 1199–1204 (2000).

    Article  CAS  Google Scholar 

  44. Bar, M. Visual objects in context. Nature Rev. Neurosci. 5, 617–629 (2004).

    Article  CAS  Google Scholar 

  45. Lewis, J. W. et al. Human brain regions involved in recognizing environmental sounds. Cereb. Cortex 14, 1008–1021 (2004).

    Article  Google Scholar 

  46. Liebenthal, E., Binder, J. R., Piorkowski, R. L. & Remez, R. E. Short-term reorganization of auditory analysis induced by phonetic experience. J. Cogn. Neurosci. 15, 549–558 (2003).

    Article  Google Scholar 

  47. Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the mind's ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci. 8, 29–46 (1996).

    Article  CAS  Google Scholar 

  48. Lockwood, A. H. et al. The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology 56, 472–480 (2001).

    Article  CAS  Google Scholar 

  49. Griffiths, T. D. Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain 123, 2065–2076 (2000).

    Article  Google Scholar 

  50. Näätänen, R. & Winkler, I. The concept of auditory stimulus representation in cognitive neuroscience. Psychol. Bull. 125, 826–859 (1999).

    Article  Google Scholar 

  51. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J. P. Functional specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  Google Scholar 

  52. Maeder, P. P. et al. Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14, 802–816 (2001).

    Article  CAS  Google Scholar 

  53. Warren, J. D. & Griffiths, T. D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J. Neurosci. 23, 5799–5804 (2003).

    Article  CAS  Google Scholar 

  54. Arnott, S. R., Binns, M. A., Grady, C. L. & Alain, C. Assessing the auditory dual-pathway model in humans. Neuroimage 22, 401–408 (2004).

    Article  Google Scholar 

  55. Engel, A. K., Roelfsema, P. R., Fries, P., Brecht, M. & Singer, W. Role of the temporal domain for response selection and perceptual binding. Cereb. Cortex. 7, 571–582 (1997).

    Article  CAS  Google Scholar 

  56. Romanski, L. M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neurosci. 2, 1131–1136 (1999).

    Article  CAS  Google Scholar 

  57. Zatorre, R. J., Belin, P. & Penhune, V. B. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    Article  Google Scholar 

  58. Schwartz, J. & Tallal, P. Rate of acoustic change may underlie hemispheric specialization for speech perception. Science 207, 1380–1381 (1980).

    Article  CAS  Google Scholar 

  59. Zatorre, R. J. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    Article  CAS  Google Scholar 

  60. Rouilly, E. et al. Phase-locked responses to low frequency tones in the medial geniculate body. Hear. Res. 1, 213–226 (1979).

    Article  Google Scholar 

  61. Poeppel, D. The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time'. Speech Commun. 41, 245–255 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

T.D.G. is supported by the Wellcome Trust. J.D.W. is supported by an EC Grant to the APOPIS Consortium. R. Patterson suggested the use of the Oxford English Dictionary. We thank D. Poeppel, B. Horwitz and three anonymous reviewers for stimulating comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Griffiths.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

Auditory processing

Griffiths' Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, T., Warren, J. What is an auditory object?. Nat Rev Neurosci 5, 887–892 (2004). https://doi.org/10.1038/nrn1538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing