Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The gut microbiota — masters of host development and physiology

Key Points

  • Animals are closely associated with a vast and diverse microbiota, most members of which reside in the gastrointestinal tract. Two gradients of microbial distribution exist in the gastrointestinal tract: the proximal–distal axis and the tissue–lumen axis.

  • Several parameters, including diet, lifestyle, antibiotics and other drugs, hygiene, and the genetics and immune status of the host, shape the microbiota composition, with various consequences for host physiology.

  • The gut microbiota is required for the development and maturation of the intestinal epithelium and immune system of the host. This microbiota affects properties of the mucus layer, promotes the development of lymphoid structures, modulates activation and differentiation of several lymphocyte populations and balances the production of immunoglobulin A and antimicrobial peptides.

  • The gut microbiota facilitates host metabolism and adiposity by expanding nutrient sources, producing essential vitamins and carrying out xenobiotic metabolism, but also affects a wide range of other host physiological aspects, including organ morphogenesis, intestinal vascularization, tissue homeostasis, carcinogenesis, bone mass and behaviour.

  • There is increasing evidence for a tight cross-species homeostatic interaction between the host and its microbiota, and research in this field has been facilitated by recent progress in the description and isolation of gut microbiota members, as well as in gnotobiology and host genetics. Elucidation of the molecular targets and causative connections in these host–microbiota interactions promises to reveal new possibilities to treat chronic inflammatory diseases and maintain human health.

Abstract

Establishing and maintaining beneficial interactions between the host and its associated microbiota are key requirements for host health. Although the gut microbiota has previously been studied in the context of inflammatory diseases, it has recently become clear that this microbial community has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism. The underlying molecular mechanisms of host–microorganism interactions remain largely unknown, but recent studies have begun to identify the key signalling pathways of the cross-species homeostatic regulation between the gut microbiota and its host.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors shaping intestinal microbial composition and effects of dysbiosis on host health.
Figure 2: Microbiota-induced maturation of the gastrointestinal tract.
Figure 3: Microbial impact on host physiology.

Similar content being viewed by others

References

  1. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012). A detailed catalogue of the human gut microbiome.

  3. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010). The first catalogue of the human microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Sina, C. et al. Extracellular cathepsin K exerts antimicrobial activity and is protective against chronic intestinal inflammation in mice. Gut 22 Mar 2012 (doi:10.1136/gutjnl-2011-300076).

  6. Swidsinski, A., Loening-Baucke, V., Lochs, H. & Hale, L. P. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J. Gastroenterol. 11, 1131–1140 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu, J. & Gordon, J. I. Honor thy symbionts. Proc. Natl Acad. Sci. USA 100, 10452–10459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  9. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, K., McCoy, K. D. & Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Sjogren, K. et al. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res. 27, 1357–1367 (2012). A study demonstrating that the gut microbiota affects bone mass, possibly by inhibiting osteoclastogenesis through modulation of the T cell profile.

    Article  CAS  PubMed  Google Scholar 

  12. Lederberg, J. Infectious history. Science 288, 287–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Arrieta, M. C. & Finlay, B. B. The commensal microbiota drives immune homeostasis. Front. Immunol. 3, 33 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Hara, A. M. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008). An article showing that the inner mucus layer shields the intestinal epithelium from bacterial contact.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johansson, M. E., Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4659–4665 (2011).

    Article  PubMed  Google Scholar 

  19. Juge, N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 20, 30–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ambort, D. et al. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc. Natl Acad. Sci. USA 109, 5645–5650 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharma, R., Schumacher, U., Ronaasen, V. & Coates, M. Rat intestinal mucosal responses to a microbial flora and different diets. Gut 36, 209–214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petersson, J. et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G327–G333 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. An, G. et al. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med. 204, 1417–1429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu, J. et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Invest. 121, 1657–1666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nature Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  Google Scholar 

  27. Mebius, R. E. Organogenesis of lymphoid tissues. Nature Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  28. Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nature Rev. Immunol. 12, 9–23 (2012).

    Article  CAS  Google Scholar 

  29. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  Google Scholar 

  30. Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Eberl, G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nature Rev. Immunol. 5, 413–420 (2005).

    Article  CAS  Google Scholar 

  32. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008). A study which reveals that microbial induction of ileal lymphoid follicles is mediated via peptidoglycans that are recognized mainly by the intracellular NOD1 receptor.

    Article  CAS  PubMed  Google Scholar 

  35. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nature Immunol. 10, 66–74 (2009).

    Article  CAS  Google Scholar 

  36. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  37. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  38. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Cohen, N. R., Garg, S. & Brenner, M. B. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 102, 1–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Van Kaer, L., Parekh, V. V. & Wu, L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res. 343, 43–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012). An elegant study demonstrating that the gut microbiota is required for normal development of iNKT cells in neonates and thereby protects from inflammatory diseases, thus confirming the hygiene hypothesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kieper, W. C. et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol. 174, 3158–3163 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, P. M. & Garrett, W. S. The gut microbiota and mucosal T cells. Front. Microbiol. 2, 111 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  Google Scholar 

  45. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maynard, C. L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nature Immunol. 8, 931–941 (2007).

    Article  CAS  Google Scholar 

  47. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4615–4622 (2011).

    Article  PubMed  Google Scholar 

  52. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunol. 9, 769–776 (2008).

    Article  CAS  Google Scholar 

  55. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012). An article which shows that the gut microbiota is required for the development of completely functional IgA-producing cells and thereby maintains microbial homeostasis in the intestine.

    Article  CAS  PubMed  Google Scholar 

  57. Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nature Rev. Immunol. 12, 503–516 (2012).

    Article  CAS  Google Scholar 

  58. Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275, 40478–40482 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol. 4, 269–273 (2003).

    Article  CAS  Google Scholar 

  61. Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunol. 13, 449–456 (2012). Work revealing that intestinal phagocytes discriminate commensals from pathogens using the intracellular NLRC4 (NOD-, LRR- and CARD-containing 4) inflammasome and by being hyporesponsive to commensal-derived TLR stimuli.

    Article  CAS  Google Scholar 

  62. Schauber, J. et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52, 735–741 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl Acad. Sci. USA 106, 15813–15818 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol. 11, 76–83 (2010).

    Article  CAS  Google Scholar 

  66. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011). A detailed analysis revealing the molecular pathway of a symbiotic interaction between the fruit fly and one of its gut bacteria; this interaction is required for a normal developmental rate, body size, wing area and metabolism, as well as for normal stem cell activity.

    Article  CAS  PubMed  Google Scholar 

  68. Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Troll, J. V. et al. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal–bacterial symbiosis. Cell. Microbiol. 11, 1114–1127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McFall-Ngai, M. Host-microbe symbiosis: the squid-Vibrio association—a naturally occurring, experimental model of animal/bacterial partnerships. Adv. Exp. Med. Biol. 635, 102–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Wagner, C. L., Taylor, S. N. & Johnson, D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin. Rev. Allergy Immunol. 34, 191–204 (2008).

    Article  PubMed  Google Scholar 

  72. Reinhardt, C., Reigstad, C. S. & Bäckhed, F. Intestinal microbiota during infancy and its implications for obesity. J. Pediatr. Gastroenterol. Nutr. 48, 249–256 (2009).

    Article  PubMed  Google Scholar 

  73. Wostmann, B. S. The germfree animal in nutritional studies. Annu. Rev. Nutr. 1, 257–279 (1981).

    Article  CAS  PubMed  Google Scholar 

  74. Gordon, H. A. & Bruckner-Kardoss, E. Effect of normal microbial flora on intestinal surface area. Am. J. Physiol. 201, 175–178 (1961).

    Article  CAS  PubMed  Google Scholar 

  75. Abrams, G. D., Bauer, H. & Sprinz, H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12, 355–364 (1963).

    CAS  PubMed  Google Scholar 

  76. Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2012). An investigation which demonstrates that bacteria promote vessel formation in the intestinal epithelium by modulating tissue factor signalling.

    Article  CAS  PubMed  Google Scholar 

  77. Banasaz, M., Norin, E., Holma, R. & Midtvedt, T. Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 68, 3031–3034 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alam, M., Midtvedt, T. & Uribe, A. Differential cell kinetics in the ileum and colon of germfree rats. Scand. J. Gastroenterol. 29, 445–451 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Husebye, E., Hellstrom, P. M. & Midtvedt, T. Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex. Dig. Dis. Sci. 39, 946–956 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Lutgendorff, F., Akkermans, L. M. & Soderholm, J. D. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr. Mol. Med. 8, 282–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132, 1359–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA 99, 15451–15455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 23, 2333–2344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crawford, P. A. & Gordon, J. I. Microbial regulation of intestinal radiosensitivity. Proc. Natl Acad. Sci. USA 102, 13254–13259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Savage, D. C., Siegel, J. E., Snellen, J. E. & Whitt, D. D. Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Appl. Environ. Microbiol. 42, 996–1001 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Blumberg, R. & Powrie, F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4, 137rv7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hope, M. E., Hold, G. L., Kain, R. & El-Omar, E. M. Sporadic colorectal cancer – role of the commensal microbiota. FEMS Microbiol. Lett. 244, 1–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Swidsinski, A. et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115, 281–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanapareddy, N. et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 6, 1858–1868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Uronis, J. M. & Jobin, C. Microbes and colorectal cancer: is there a relationship? Curr. Oncol. 16, 22–24 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dove, W. F. et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57, 812–814 (1997).

    CAS  PubMed  Google Scholar 

  97. Breuer, N. & Goebell, H. The role of bile acids in colonic carcinogenesis. Klin. Wochenschr. 63, 97–105 (1985).

    Article  CAS  PubMed  Google Scholar 

  98. Toprak, N. U. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12, 782–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Abdulamir, A. S., Hafidh, R. R. & Abu Bakar, F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res. 30, 11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Del Fattore, A., Teti, A. & Rucci, N. Bone cells and the mechanisms of bone remodelling. Front. Biosci. (Elite Ed.) 4, 2302–2321 (2012).

    Article  Google Scholar 

  102. Bliziotes, M. et al. Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. Bone 39, 1313–1321 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wei, S., Kitaura, H., Zhou, P., Ross, F. P. & Teitelbaum, S. L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 115, 282–290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zwerina, J. et al. TNF-induced structural joint damage is mediated by IL-1. Proc. Natl Acad. Sci. USA 104, 11742–11747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).

    Article  PubMed  Google Scholar 

  110. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  111. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). A report which reveals that there are alterations in the gut microbiome in Chinese patients with type 2 diabetes, and that these alterations can predict the occurrence of diabetes.

    Article  CAS  PubMed  Google Scholar 

  113. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004). The first demonstration that the gut microbiota modulates adiposity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Caesar, R. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61, 1701–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Commun. 3, 1245 (2012).

    Article  CAS  Google Scholar 

  118. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Boettcher, K. J., Ruby, E. G. & McFall-Ngai, M. J. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179, 65–73 (1996).

    Article  Google Scholar 

  122. Degnan, P. H. et al. Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc. Natl Acad. Sci. USA 109, 13034–13039 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 107, 20051–20056 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Huang, Y., Callahan, S. & Hadfield, M. G. Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm. Sci. Rep. 2, 228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Verhulst, N. O. et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS ONE 6, e28991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Forsythe, P. & Kunze, W. A. Voices from within: gut microbes and the CNS. Cell. Mol. Life Sci. 70, 55–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Amaral, F. A. et al. Commensal microbiota is fundamental for the development of inflammatory pain. Proc. Natl Acad. Sci. USA 105, 2193–2197 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Lyte, M., Li, W., Opitz, N., Gaykema, R. P. & Goehler, L. E. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89, 350–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011). The finding that the gut microbiota affects the development of the brain and anxiety-like behaviour.

    Article  PubMed Central  Google Scholar 

  132. Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–e119 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Diamond, B., Huerta, P. T., Tracey, K. & Volpe, B. T. It takes guts to grow a brain: increasing evidence of the important role of the intestinal microflora in neuro- and immune-modulatory functions during development and adulthood. Bioessays 33, 588–591 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Collins, S. M., Surette, M. & Bercik, P. The interplay between the intestinal microbiota and the brain. Nature Rev. Microbiol. 10, 735–742 (2012).

    Article  CAS  Google Scholar 

  135. Kellermayer, R. et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. 25, 1449–1460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012). An extensive analysis of the gut microbiome of healthy children and adults from three different geographical regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Koboziev, I., Karlsson, F. & Grisham, M. B. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann. NY Acad. Sci. 1207 (Suppl. 1), e86–e93 (2010).

    Article  PubMed  Google Scholar 

  140. Veenbergen, S. & Samsom, J. N. Maintenance of small intestinal and colonic tolerance by IL-10-producing regulatory T cell subsets. Curr. Opin. Immunol. 24, 269–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Walker, J. A., Barlow, J. L. & McKenzie, A. N. Innate lymphoid cells - how did we miss them? Nature Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Perkins for editing the manuscript and A. Hallén for contributions to the figures. Work in the Bäckhed laboratory is supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the Swedish Heart Lung foundation, the Swedish Diabetes Foundation, the European Union-funded project TORNADO (grant FP7-KBBE-222720), Ragnar Söderberg's Foundation, Torsten Söderberg's Foundation, the NovoNordisk Foundation, AFA Insurance, IngaBritt and Arne Lundberg's Foundation and a LUA-ALF grant from the Swedish Västra Götalandsregionen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Bäckhed.

Ethics declarations

Competing interests

F.B. is a scientific founder of MetaboGen AB and owns equity in the company. F.S. declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Fredrik Bäckhed's homepage

Glossary

Microbiota

The sum of all microorganisms (including bacteria, archaea, eukaryotes and viruses) that reside in and/or on a host or a specified part of a host (such as the gastrointestinal tract).

Mutualistic

Pertaining to a relationship between two organisms: beneficial to both organisms. The term originates from the Latin word mutuus (lent, borrowed or mutual).

Superorganism

A term that extends the classical biological definition of an organism (a living system capable of autonomous metabolism and reproduction) by including the many microorganisms that live in and on that host organism, thus yielding a superior degree of complexity. The term originates from the Latin supra (above) and the Greek organon (organ, instrument, tool).

Symbiosis

Any close physical association between two organisms, usually from different species. This includes mutualism, commensalism and parasitism. The term originates from the Greek words syn (together) and bio (life).

Pathobionts

Normally harmless microorganism that can become pathogens under certain environmental conditions.

Somatic hypermutation

A programmed process of mutation affecting the variable regions of immunoglobulin genes during affinity maturation of B cell receptors.

Experimental autoimmune encephalomyelitis

An animal model of T cell-mediated autoimmune disease in general and in particular of demyelinating diseases of the central nervous system, such as multiple sclerosis.

T follicular helper cells

A T cell subtype that resides in the B cell follicles of secondary lymphoid organs and expresses the B cell homing receptor CXC-chemokine receptor 5. These T cells mediate B cell activation and trigger the formation of the germinal centre.

Crypts of Lieberkühn

Tubular invaginations of the intestinal epithelium around the villi. The crypt base contains Paneth cells, which secrete mainly antimicrobial peptides as well as other immune factors, and continually dividing stem cells that are the source of all intestinal epithelial cells.

Xenobiotic metabolism

The metabolism of foreign compounds that are neither produced by nor naturally found in the host, such as drugs.

Enterochromaffin cells

A subtype of enteroendocrine cells in the intestinal or respiratory epithelium. Enterochromaffin cells are the main source of serotonin in the body and are thereby involved in the regulation of intestinal peristalsis and nausea.

Desmosome

A type of junctional complex that is mainly found in epithelia (specifically, in the lateral plasma membrane of the epithelial cell) and mediates cell-to-cell adhesion to allow cells to withstand shearing forces.

Tight junctions

Junctional complexes that are present only in vertebrates (the invertebrate equivalents are the septate junctions) and are located at the transition of the apical and lateral membrane, closely connecting two epithelial cells and thereby making the epithelium impermeable to water and solutes.

Dysbiosis

An imbalance in the structural and/or functional configuration of the microbiota, leading to a disruption of host–microorganism homeostasis.

Gnotobiotic

Pertaining to an organism: associated with a defined microbiota. For example, laboratory mice can be reared under sterile (germ-free) conditions or colonized with a specific collection of microorganisms. From the Greek gnosis (known or knowledge) and bios (life).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, F., Bäckhed, F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol 11, 227–238 (2013). https://doi.org/10.1038/nrmicro2974

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2974

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing