Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The road to chromatin — nuclear entry of retroviruses

Key Points

  • Integration of viral DNA into the host genome is an essential step in the replication cycle of human immunodeficiency virus 1 (HIV-1) and other retroviruses.

  • The viral DNA, which is synthesized by reverse transcription in the cytoplasm, is part of a very large nucleoprotein complex, the pre-integration complex (PIC), that must be transported to the nucleus before the DNA can be integrated. Motor proteins transport the PIC to the nucleus using the cytoskeleton as a highway.

  • HIV-1 can infect non-dividing cells, so HIV-1 PICs must cross the nuclear envelope. This is a formidable challenge, because PICs are very large compared with nuclear pores. Some other retroviruses only replicate efficiently in dividing cells, and their PICs might require the breakdown of the nuclear envelope during cell division to enter the nucleus.

  • Several viral proteins have been proposed to contain signals that target HIV-1 PICs to the nucleus. There might be more than one signal in each protein.

  • Nuclear entry of HIV-1 PICs is probably mediated by the importin pathway, which targets many cellular proteins to the nucleus.

  • Studying the nuclear entry of retroviral PICs should advance our basic knowledge of intracellular trafficking and will also facilitate the identification of novel antiviral targets and the design of improved retroviral vectors.

Abstract

Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From cell entry to DNA integration.
Figure 2: Nuclear import of pre-integration complexes and the cell cycle.
Figure 3: HIV-1 proteins and PIC nuclear import.
Figure 4: LEDGF/p75 and nuclear entry of PICs.
Figure 5: Nuclear-envelope-associated proteins and retroviral DNA integration.

Similar content being viewed by others

References

  1. Coffin, J., Hughes, S. & Varmus, H. Retroviruses (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  2. Goff, S. P. Intracellular trafficking of retroviral genomes during the early phase of infection: viral exploitation of cellular pathways. J. Gene Med. 3, 517–528 (2001). A review with an extensive discussion of the formation, transport, nuclear entry and integration of retroviral pre-integration complexes (PICs).

    Article  CAS  PubMed  Google Scholar 

  3. Whittaker, G. R., Kann, M. & Helenius, A. Viral entry into the nucleus. Annu. Rev. Cell Dev. Biol. 16, 627–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, J. L. & Hope, T. J. Intracellular trafficking of retroviral vectors: obstacles and advances. Gene Ther. 12, 1667–1678 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Katz, R. A., Greger, J. G. & Skalka, A. M. Effects of cell cycle status on early events in retroviral replication. J. Cell Biochem. 94, 880–889 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    Article  CAS  Google Scholar 

  7. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  Google Scholar 

  8. Roe, T., Reynolds, T. C., Yu, G. & Brown, P. O. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108 (1993). The first demonstration that integration of Moloney murine leukaemia virus (MoMLV) is blocked when the cell-division cycle is arrested by serum starvation or chemical treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weinberg, J. B., Matthews, T. J., Cullen, B. R. & Malim, M. H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174, 1477–1482 (1991). The first demonstation of human immunodeficiency virus 1 (HIV-1) replication in non-dividing cells.

    Article  CAS  PubMed  Google Scholar 

  10. Fouchier, R. A. & Malim, M. H. Nuclear import of human immunodeficiency virus type-1 preintegration complexes. Adv. Virus Res. 52, 275–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Dvorin, J. D. & Malim, M. H. Intracellular trafficking of HIV-1 cores: journey to the center of the cell. Curr. Top. Microbiol. Immunol. 281, 179–208 (2003).

    CAS  PubMed  Google Scholar 

  12. Bukrinskaya, A., Brichacek, B., Mann, A. & Stevenson, M. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113–2125 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fassati, A. & Goff, S. P. Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J. Virol. 73, 8919–8125 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fassati, A. & Goff, S. P. Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J. Virol. 75, 3626–3635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Narayan, S. & Young, J. A. Reconstitution of retroviral fusion and uncoating in a cell-free system. Proc. Natl Acad. Sci. USA 101, 7721–7726 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iordanskiy, S., Berro, R., Altieri, M., Kashanchi, F. & Bukrinsky, M. Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3, 4 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bukrinsky, M. I. et al. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl Acad. Sci. USA 90, 6125–6129 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, M. D., Farnet, C. M. & Bushman, F. D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 71, 5382–5390 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, P. O., Bowerman, B., Varmus, H. E. & Bishop, J. M. Correct integration of retroviral DNA in vitro. Cell 49, 347–356 (1987). A landmark paper showing in vitro integration activity of MoMLV PICs. This work paved the way for biochemical studies of retroviral DNA integration.

    Article  CAS  PubMed  Google Scholar 

  21. Fujiwara, T. & Mizuuchi, K. Retroviral DNA integration: structure of an integration intermediate. Cell 54, 497–504 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Bowerman, B., Brown, P. O., Bishop, J. M. & Varmus, H. E. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 3, 469–478 (1989). The first biochemical study of retroviral PICs.

    Article  CAS  PubMed  Google Scholar 

  23. Ellison, V., Abrams, H., Roe, T., Lifson, J. & Brown, P. Human immunodeficiency virus integration in a cell-free system. J. Virol. 64, 2711–2715 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Farnet, C. M. & Haseltine, W. A. Integration of human immunodeficiency virus type 1 DNA in vitro. Proc. Natl Acad. Sci. USA 87, 4164–4168 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, M. S. & Craigie, R. Protection of retroviral DNA from autointegration: involvement of a cellular factor. Proc. Natl Acad. Sci. USA 91, 9823–9827 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farnet, C. M. & Bushman, F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88, 483–492 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Li, L. et al. Retroviral cDNA integration: stimulation by HMG I family proteins. J. Virol. 74, 10965–10974 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farnet, C. M. & Haseltine, W. A. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J. Virol. 65, 1910–1915 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karageorgos, L., Li, P. & Burrell, C. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res. Hum. Retroviruses 9, 817–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Gallay, P., Swingler, S., Song, J., Bushman, F. & Trono, D. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83, 569–576 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, M. S. & Craigie, R. A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl Acad. Sci. USA 95, 1528–1533 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, L. et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, Y. & Craigie, R. Regulatory mechanisms by which barrier-to-autointegration factor blocks autointegration and stimulates intermolecular integration of Moloney murine leukemia virus preintegration complexes. J. Virol. 76, 12376–12380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, C. W. & Engelman, A. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J. Virol. 77, 5030–5036 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Llano, M. et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J. Virol. 78, 9524–9537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suzuki, Y., Yang, H. & Craigie, R. LAP2α and BAF collaborate to organize the Moloney murine leukemia virus preintegration complex. EMBO J. 23, 4670–4678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandegraaff, N., Devroe, E., Turlure, F., Silver, P. A. & Engelman, A. Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology 346, 415–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Sodeik, B., Ebersold, M. W. & Helenius, A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136, 1007–1021 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ploubidou, A. et al. Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J. 19, 3932–3944 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suomalainen, M., Nakano, M. Y., Boucke, K., Keller, S. & Greber, U. F. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J. 20, 1310–1319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arhel, N. et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nature Methods 3, 817–824 (2006). Quantitative four-dimensional tracking of HIV-1 nucleoprotein complexes by fluorescently labelling integrase. Shows the role of microtubule- and actin-dependent transport of the PIC to the nucleus.

    Article  CAS  PubMed  Google Scholar 

  42. McDonald, D. The inside track of HIV. Nature Methods 3, 782–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Heine, U. I., Demsey, A. E., Tucker, R. W. & Bykovsky, A. F. Intracellular type A retrovirus movement associated with an intact microtubule system. J. Gen. Virol. 66, 275–282 (1985).

    Article  Google Scholar 

  44. Saib, A., Puvion-Dutilleul, F., Schmid, M., Peries, J. & de The, H. Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J. Virol. 71, 1155–1161 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rey, O., Canon, J. & Krogstad, P. HIV-1 Gag protein associates with F-actin present in microfilaments. Virology 220, 530–534 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, B. et al. Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. J. Virol. 73, 2901–2908 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilk, T., Gowen, B. & Fuller, S. D. Actin associates with the nucleocapsid domain of the human immunodeficiency virus Gag polyprotein. J. Virol. 73, 1931–1940 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, W. et al. Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein. J. Virol. 72, 6898–6901 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang, Y. et al. Cellular motor protein KIF-4 associates with retroviral Gag. J. Virol. 73, 10508–10513 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Petit, C. et al. Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J. Cell Sci. 116, 3433–3442 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Harel, J., Rassart, E. & Jolicoeur, P. Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virology 110, 202–207 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Miller, D. G., Adam, M. A. & Miller, A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lewis, P. F. & Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hatziioannou, T. & Goff, S. P. Infection of nondividing cells by Rous sarcoma virus. J. Virol. 75, 9526–9531 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bukrinsky, M. I. et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl Acad. Sci. USA 89, 6580–6584 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lewis, P., Hensel, M. & Emerman, M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11, 3053–3058 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Miyake, K., Suzuki, N., Matsuoka, H., Tohyama, T. & Shimada, T. Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of nondividing cells. Hum. Gene Ther. 9, 467–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Blankson, J. N., Persaud, D. & Siliciano, R. F. The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53, 557–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Kaul, M., Garden, G. A. & Lipton, S. A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Akkina, R. K. et al. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Naldini, L., Blomer, U., Gage, F. H., Trono, D. & Verma, I. M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M. & Torbett, B. E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Zennou, V. et al. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nature Biotechnol. 19, 446–450 (2001).

    Article  CAS  Google Scholar 

  65. Ailles, L. E. & Naldini, L. HIV-1-derived lentiviral vectors. Curr. Top. Microbiol. Immunol. 261, 31–52 (2002).

    CAS  PubMed  Google Scholar 

  66. Poeschla, E. et al. Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J. Virol. 72, 6527–6536 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Poeschla, E. M., Wong-Staal, F. & Looney, D. J. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Med. 4, 354–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Johnston, J. & Power, C. Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development. J. Virol. 73, 2491–2498 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. White, S. M. et al. Lentivirus vectors using human and simian immunodeficiency virus elements. J. Virol. 73, 2832–2840 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zielske, S. P. & Stevenson, M. Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages. J. Virol. 79, 11541–11546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiss, R. Studies on the loss of growth inhibition in cells infected with Rous sarcoma virus. Int. J. Cancer 6, 333–345 (1970).

    Article  CAS  PubMed  Google Scholar 

  72. Humphries, E. H. & Temin, H. M. Cell cycle-dependent activation of Rous sarcoma virus-infected stationary chicken cells: avian leukosis virus group-specific antigens and ribonucleic acid. J. Virol. 10, 82–87 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Humphries, E. H. & Temin, H. M. Requirement for cell division for initiation of transcription of Rous sarcoma virus RNA. J. Virol. 14, 531–546 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Varmus, H. E., Padgett, T., Heasley, S., Simon, G. & Bishop, J. M. Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell 11, 307–319 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Humphries, E. H., Glover, C. & Reichmann, M. E. Rous sarcoma virus infection of synchronized cells establishes provirus integration during S-phase DNA synthesis prior to cellular division. Proc. Natl Acad. Sci. USA 78, 2601–2605 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Katz, R. A. et al. Transduction of interphase cells by avian sarcoma virus. J. Virol. 76, 5422–5434 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greger, J. G., Katz, R. A., Taganov, K., Rall, G. F. & Skalka, A. M. Transduction of terminally differentiated neurons by avian sarcoma virus. J. Virol. 78, 4902–4906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jarrosson-Wuilleme, L. et al. Transduction of nondividing human macrophages with gammaretrovirus-derived vectors. J. Virol. 80, 1152–1159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bieniasz, P. D., Weiss, R. A. & McClure, M. O. Cell cycle dependence of foamy retrovirus infection. J. Virol. 69, 7295–7299 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Parveen, Z. et al. Spleen necrosis virus-derived C-type retroviral vectors for gene transfer to quiescent cells. Nature Biotechnol. 18, 623–629 (2000).

    Article  CAS  Google Scholar 

  81. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Nermut, M. V. & Fassati, A. Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J. Virol. 77, 8196–8206 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bukrinsky, M. I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. von Schwedler, U., Kornbluth, R. S. & Trono, D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl Acad. Sci. USA 91, 6992–6996 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haffar, O. K. et al. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J. Mol. Biol. 299, 359–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Depienne, C. et al. Cellular distribution and karyophilic properties of matrix, integrase, and Vpr proteins from the human and simian immunodeficiency viruses. Exp. Cell Res. 260, 387–395 (2000)

    Article  CAS  PubMed  Google Scholar 

  87. Gallay, P., Swingler, S., Aiken, C. & Trono, D. HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 80, 379–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Freed, E. O., Englund, G., Maldarelli, F. & Martin, M. A. Phosphorylation of residue 131 of HIV-1 matrix is not required for macrophage infection. Cell 88, 171–173 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Freed, E. O., Englund, G. & Martin, M. A. Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J. Virol. 69, 3949–3954 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fouchier, R. A., Meyer, B. E., Simon, J. H., Fischer, U. & Malim, M. H. HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J. 16, 4531–4539 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reil, H., Bukovsky, A. A., Gelderblom, H. R. & Gottlinger, H. G. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J. 17, 2699–2708 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cohen, E. A., Dehni, G., Sodroski, J. G. & Haseltine, W. A. Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J. Virol. 64, 3097–3099 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Paxton, W., Connor, R. I. & Landau, N. R. Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J. Virol. 67, 7229–7237 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kondo, E., Mammano, F., Cohen, E. A. & Gottlinger, H. G. The p6gag domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J. Virol. 69, 2759–2764 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, Y. L., Bennett, R. P., Wills, J. W., Gorelick, R. & Ratner, L. A leucine triplet repeat sequence (LXX)4 in p6gag is important for Vpr incorporation into human immunodeficiency virus type 1 particles. J. Virol. 69, 6873–6879 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bukrinsky, M. & Adzhubei, A. Viral protein R of HIV-1. Rev. Med. Virol. 9, 39–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Lu, Y. L., Spearman, P. & Ratner, L. Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J. Virol. 67, 6542–6550 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Heinzinger, N. K. et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl Acad. Sci. USA 91, 7311–7315 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Connor, R. I., Chen, B. K., Choe, S. & Landau, N. R. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206, 935–944 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Popov, S. et al. Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J. 17, 909–917 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Balliet, J. W. et al. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology 200, 623–631 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Vodicka, M. A., Koepp, D. M., Silver, P. A. & Emerman, M. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev. 12, 175–185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kootstra, N. A. & Schuitemaker, H. Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of gag and Vpr is comparable to wild-type HIV-1 in primary macrophages. Virology 253, 170–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Bouyac-Bertoia, M. et al. HIV-1 infection requires a functional integrase NLS. Mol. Cell 7, 1025–1035 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Yamashita, M. & Emerman, M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog. 1, e18 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Jenkins, Y., McEntee, M., Weis, K. & Greene, W. C. Characterization of HIV-1 Vpr nuclear import: analysis of signals and pathways. J. Cell Biol. 143, 875–885 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karni, O., Friedler, A., Zakai, N., Gilon, C. & Loyter, A. A peptide derived from the N-terminal region of HIV-1 Vpr promotes nuclear import in permeabilized cells: elucidation of the NLS region of the Vpr. FEBS Lett. 429, 421–425 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Popov, S., Rexach, M., Ratner, L., Blobel, G. & Bukrinsky, M. Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J. Biol. Chem. 273, 13347–13352 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. de Noronha, C. M. et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294, 1105–1108 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Scott, E. S. & O'Hare, P. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 75, 8818–8830 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gallay, P., Hope, T., Chin, D. & Trono, D. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl Acad. Sci. USA 94, 9825–9830 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Depienne, C. et al. Characterization of the nuclear import pathway for HIV-1 integrase. J. Biol. Chem. 276, 18102–18107 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Petit, C., Schwartz, O. & Mammano, F. Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase. J. Virol. 73, 5079–5088 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pluymers, W., Cherepanov, P., Schols, D., De Clercq, E. & Debyser, Z. Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein. Virology 258, 327–332 (1999)

    Article  CAS  PubMed  Google Scholar 

  115. Ikeda, T. et al. Evaluation of the functional involvement of human immunodeficiency virus type 1 integrase in nuclear import of viral cDNA during acute infection. J. Virol. 78, 11563–11573 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dvorin, J. D. et al. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J. Virol. 76, 12087–12096 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Limon, A. et al. Nuclear localization of human immunodeficiency virus type 1 preintegration complexes (PICs): V165A and R166A are pleiotropic integrase mutants primarily defective for integration, not PIC nuclear import. J. Virol. 76, 10598–10607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A. & Craigie, R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J. Virol. 69, 2729–2736 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Masuda, T., Planelles, V., Krogstad, P. & Chen, I. S. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J. Virol. 69, 6687–6696 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Leavitt, A. D., Robles, G., Alesandro, N. & Varmus, H. E. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J. Virol. 70, 721–728 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Petit, C., Schwartz, O. & Mammano, F. The karyophilic properties of human immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA. J. Virol. 74, 7119–7126 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tsurutani, N. et al. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J. Virol. 74, 4795–4806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Devroe, E., Engelman, A. & Silver, P. A. Intracellular transport of human immunodeficiency virus type 1 integrase. J. Cell Sci. 116, 4401–4408 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Maertens, G. et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J. Biol. Chem. 278, 33528–33539 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Morris-Vasios, C., Kochan, J. P. & Skalka, A. M. Avian sarcoma-leukosis virus pol-endo proteins expressed independently in mammalian cells accumulate in the nucleus but can be directed to other cellular compartments. J. Virol. 62, 349–353 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mumm, S. R., Hippenmeyer, P. J. & Grandgenett, D. P. Characterization of a stable eukaryotic cell line expressing the Rous sarcoma virus integrase. Virology 189, 500–510 (1992).

    Article  CAS  PubMed  Google Scholar 

  127. Kukolj, G., Jones, K. S. & Skalka, A. M. Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases. J. Virol. 71, 843–847 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kukolj, G., Katz, R. A. & Skalka, A. M. Characterization of the nuclear localization signal in the avian sarcoma virus integrase. Gene 223, 157–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Risco, C., Menendez-Arias, L., Copeland, T. D., Pinto da Silva, P. & Oroszlan, S. Intracellular transport of the murine leukemia virus during acute infection of NIH 3T3 cells: nuclear import of nucleocapsid protein and integrase. J. Cell Sci. 108, 3039–3050 (1995).

    CAS  PubMed  Google Scholar 

  130. Yamashita, M. & Emerman, M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J. Virol. 78, 5670–5678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamashita, M. & Emerman, M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 344, 88–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Yuan, B., Li, X. & Goff, S. P. Mutations altering the Moloney murine leukemia virus p12 Gag protein affect virion production and early events of the virus life cycle. EMBO J. 18, 4700–4710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Stevenson, M. HIV nuclear import: what's the flap? Nature Med. 6, 626–628 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Charneau, P., Alizon, M. & Clavel, F. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol. 66, 2814–2820 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Charneau, P. et al. HIV-1 reverse transcription. A termination step at the center of the genome. J. Mol. Biol. 241, 651–662 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Hungnes, O., Tjotta, E. & Grinde, B. Mutations in the central polypurine tract of HIV-1 result in delayed replication. Virology 190, 440–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  138. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genet. 25, 217–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Sirven, A. et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96, 4103–4110 (2000).

    CAS  PubMed  Google Scholar 

  140. Dardalhon, V. et al. Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene Ther. 8, 190–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Limon, A., Nakajima, N., Lu, R., Ghory, H. Z. & Engelman, A. Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. J. Virol. 76, 12078–12086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Arhel, N. J., Souquere-Besse, S. & Charneau, P. Wild-type and central DNA flap defective HIV-1 lentiviral vector genomes: intracellular visualization at ultrastructural resolution levels. Retrovirology 3, 38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Arhel, N., Munier, S., Souque, P., Mollier, K., and Charneau, P. Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. J. Virol. 80, 10262–10269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. De Rijck, J., and Debyser, Z. The central DNA flap of human immunodeficiency virus type 1 is important for viral replication. Biochem. Biophys. Res. Com. 349, 1100–1110 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Gallay, P., Stitt, V., Mundy, C., Oettinger, M. & Trono, D. Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J. Virol. 70, 1027–1032 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fouchier, R. A. et al. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J. Virol. 72, 6004–6013 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ebina, H., Aoki, J., Hatta, S., Yoshida, T. & Koyanagi, Y. Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA. Microbes Infect. 6, 715–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Fassati, A., Gorlich, D., Harrison, I., Zaytseva, L. & Mingot, J. M. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J. 22, 3675–3685 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zaitseva, L., Myers, R. & Fassati, A. tRNAs promote nuclear import of HIV-1 intranuclear reverse transcription complexes. PLoS Biol. 4, 1689–1706 (2006)

    Article  CAS  Google Scholar 

  150. Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Llano, M. Delgado S., Vanegas M. & Poeschla E. M. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J. Biol. Chem. 279, 55570–55577 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Vanegas, M. et al. Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J. Cell Sci. 118, 1733–1743 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Maertens, G., Cherepanov, P., Debyser, Z., Engelborghs, Y. & Engelman, A. Identification and characterization of a functional nuclear localization signal in the HIV-1 integrase interactor LEDGF/p75. J. Biol. Chem. 279, 33421–33429 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Busschots, K. et al. The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J. Biol. Chem. 280, 17841–17847 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Zielske, S. P. & Stevenson, M. Modest but reproducible inhibition of human immunodeficiency virus type 1 infection in macrophages following LEDGFp75 silencing. J. Virol. 80, 7275–7280 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Llano, M. et al. An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464 (2006). A definitive demonstration that knockdown of LEDGF/p75 by RNA interference dramatically decreases HIV-1 replication.

    Article  CAS  PubMed  Google Scholar 

  157. Emiliani, S. et al. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem. 280, 25517–25523 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Turlure, F., Maertens, G., Rahman, S., Cherepanov, P. & Engelman, A. A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res. 34, 1663–1675 (2006).

    Article  CAS  Google Scholar 

  159. Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nature Med. 11, 1287–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Vandekerckhove, L. et al. Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J. Virol. 80, 1886–1896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jacque, J. M. & Stevenson, M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 441, 641–645 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Shun, M. C., Daigle, J. E., Vandegraaff, N. & Engelman. A. Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein. J. Virol. 81, 166–172 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Anonymous. Whither RNAi? Nature Cell Biol. 5, 489–490 (2003).

Download references

Acknowledgements

This work was supported in part by the Intramural Research Programme of the National Institute of Diabetes and Digestive and Kidney Diseases (US National Intitutes of Health).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Craigie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

ASV

FIV

FrMLV

HFV

HIV-1

HIV-2

HSV

HTLV

MoMLV

SIV

spleen necrosis virus

SV40

vaccinia virus

Glossary

Karyophilic proteins

Proteins carrying signals that cause them to accumulate in the nucleus. This signal is typically a short peptide sequence called a nuclear localization signal.

Pleiotropic

A gene or mutation that is responsible for several distinct and seemingly unrelated phenotypic effects.

Interphase

The period between two mitotic divisions.

Transferable nuclear localization signal

A 7–9 amino-acid residue sequence in a protein, rich in basic residues, which acts as a signal for localization of the protein within the nucleus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Craigie, R. The road to chromatin — nuclear entry of retroviruses. Nat Rev Microbiol 5, 187–196 (2007). https://doi.org/10.1038/nrmicro1579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing