Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria

Abstract

Many bacterial regulatory small RNAs (sRNAs) have several mRNA targets, which places them at the centre of regulatory networks that help bacteria to adapt to environmental changes. However, different mRNA targets of any given sRNA compete with each other for binding to the sRNA; thus, depending on relative abundances and sRNA affinity, competition for regulatory sRNAs can mediate cross-regulation between bacterial mRNAs. This 'target-centric' perspective of sRNA regulation is reminiscent of the competing endogenous RNA (ceRNA) hypothesis, which posits that competition for a limited pool of microRNAs (miRNAs) in higher eukaryotes mediates cross-regulation of mRNAs. In this Opinion article, we discuss evidence that a similar network of RNA crosstalk operates in bacteria, and that this network also includes crosstalk between sRNAs and competition for RNA-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of sRNA-mediated regulation in Gram-negative bacteria.
Figure 2: RNAs competing for a shared sRNA regulator.
Figure 3: RNAs competing for binding to a protein.
Figure 4: Interconnection network in which ceRNAs may link disparate pathways in Escherichia coli and Salmonella enterica.

Similar content being viewed by others

References

  1. Felden, B., Vandenesch, F., Bouloc, P. & Romby, P. The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog. 7, e1002006 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gottesman, S. & Storz, G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 3, a003798 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mika, F. & Hengge, R. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int. J. Mol. Sci. 14, 4560–4579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papenfort, K. & Vogel, J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front. Cell. Infect. Microbiol. 4, 91 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Storz, G., Vogel, J. & Wassarman, K. M. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43, 880–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Massé, E., Escorcia, F. E. & Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17, 2374–2383 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dreyfus, M. Killer and protective ribosomes. Prog. Mol. Biol. Transl. Sci. 85, 423–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Bossi, L., Schwartz, A., Guillemardet, B., Boudvillain, M. & Figueroa-Bossi, N. A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev. 26, 1864–1873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hopkins, J. F., Panja, S. & Woodson, S. A. Rapid binding and release of Hfq from ternary complexes during RNA annealing. Nucleic Acids Res. 39, 5193–5202 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panja, S. & Woodson, S. A. Hfq proximity and orientation controls RNA annealing. Nucleic Acids Res. 40, 8690–8697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogel, J. & Luisi, B. F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9, 578–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sonnleitner, E. & Bläsi, U. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet. 10, e1004440 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Desnoyers, G. & Massé, E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev. 26, 726–739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salvail, H., Caron, M. P., Bélanger, J. & Massé, E. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J. 32, 2764–2778 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bohn, C., Rigoulay, C. & Bouloc, P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol. 7, 10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y. et al. Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus. PLoS ONE 5, e13069 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rochat, T., Bouloc, P., Yang, Q., Bossi, L. & Figueroa-Bossi, N. Lack of interchangeability of Hfq-like proteins. Biochimie 94, 1554–1559 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Papenfort, K. & Vanderpool, C. K. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 39, 362–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Overgaard, M., Johansen, J., Moller-Jensen, J. & Valentin-Hansen, P. Switching off small RNA regulation with trap-mRNA. Mol. Microbiol. 73, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Figueroa-Bossi, N., Valentini, M., Malleret, L., Fiorini, F. & Bossi, L. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev. 23, 2004–2015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jost, D., Nowojewski, A. & Levine, E. Small RNA biology is systems biology. BMB Rep. 44, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Levine, E., Zhang, Z., Kuhlman, T. & Hwa, T. Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan, J. Y. & Marques, A. C. The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. Adv. Genet. 85, 149–199 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jens, M. & Rajewsky, N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet. 16, 113–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. de Giorgio, A., Krell, J., Harding, V., Stebbing, J. & Castellano, L. Emerging roles of competing endogenous RNAs in cancer: insights from the regulation of PTEN. Mol. Cell. Biol. 33, 3976–3982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Figliuzzi, M., De Martino, A. & Marinari, E. RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys. J. 107, 1011–1022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bosia, C., Pagnani, A. & Zecchina, R. Modelling competing endogenous RNA networks. PLoS ONE 8, e66609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ala, U. et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl Acad. Sci. USA 110, 7154–7159 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Tharanathan, R. N. & Kittur, F. S. Chitin — the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43, 61–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Plumbridge, J., Bossi, L., Oberto, J., Wade, J. T. & Figueroa-Bossi, N. Interplay of transcriptional and small RNA-dependent control mechanisms regulates chitosugar uptake in Escherichia coli and Salmonella. Mol. Microbiol. 92, 648–658 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Plumbridge, J. & Pellegrini, O. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol. Microbiol. 52, 437–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, C. M. et al. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol. Microbiol. 81, 1144–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Miyakoshi, M., Chao, Y. & Vogel, J. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J. 34, 1478–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coornaert, A., Chiaruttini, C., Springer, M. & Guillier, M. Post-transcriptional control of the Escherichia coli PhoQ–PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genet. 9, e1003156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, H. J. & Gottesman, S. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res. 44, 6907–6923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ikeda, T. P., Shauger, A. E. & Kustu, S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol. 259, 589–607 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Tree, J. J., Granneman, S., McAteer, S. P., Tollervey, D. & Gally, D. L. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol. Cell 55, 199–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johansen, J., Rasmussen, A. A., Overgaard, M. & Valentin-Hansen, P. Conserved small non-coding RNAs that belong to the σE regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Papenfort, K. et al. σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62, 1674–1688 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jacques, J. F. et al. RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol. Microbiol. 62, 1181–1190 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Massé, E., Vanderpool, C. K. & Gottesman, S. Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187, 6962–6971 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Balbontín, R. et al. Expression of IroN, the Salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Mol. Microbiol. 100, 139–155 (2016).

    Article  PubMed  Google Scholar 

  49. Prevost, K. et al. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64, 1260–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lalaouna, D. et al. A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell 58, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79, 193–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sterzenbach, T. et al. A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. EMBO J. 32, 2872–2883 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, J. T. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhart, F. C. et al.) 663–671 (ASM Press, 1987).

    Google Scholar 

  54. Raetz, C. R. H. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhart, F. C. et al.) 498–503 (ASM Press, 1987).

    Google Scholar 

  55. Kalamorz, F., Reichenbach, B., Marz, W., Rak, B. & Görke, B. Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol. Microbiol. 65, 1518–1533 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Urban, J. H. & Vogel, J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 6, e64 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reichenbach, B., Maes, A., Kalamorz, F., Hajnsdorf, E. & Görke, B. The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res. 36, 2570–2580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Göpel, Y., Papenfort, K., Reichenbach, B., Vogel, J. & Görke, B. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev. 27, 552–564 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sonnleitner, E., Abdou, L. & Haas, D. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 106, 21866–24871 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67, 241–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Moreno, R. et al. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ. Microbiol. 17, 105–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Boehm, A. & Vogel, J. The csgD mRNA as a hub for signal integration via multiple small RNAs. Mol. Microbiol. 84, 1–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Mandin, P. & Guillier, M. Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr. Opin. Microbiol. 16, 125–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Mika, F. et al. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol. Microbiol. 84, 51–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seitz, H. Redefining microRNA targets. Curr. Biol. 19, 870–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Figueroa-Bossi, N. et al. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev. 28, 1239–1251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jorgensen, M. G., Thomason, M. K., Havelund, J., Valentin-Hansen, P. & Storz, G. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev. 27, 1132–1145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fender, A., Elf, J., Hampel, K., Zimmermann, B. & Wagner, E. G. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev. 24, 2621–2626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hussein, R. & Lim, H. N. Disruption of small RNA signaling caused by competition for Hfq. Proc. Natl Acad. Sci. USA 108, 1110–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Moon, K. & Gottesman, S. Competition among Hfq-binding small RNAs in Escherichia coli. Mol. Microbiol. 82, 1545–1562 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Fröhlich, K. S., Papenfort, K., Fekete, A. & Vogel, J. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J. 32, 2963–2979 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guillier, M. & Gottesman, S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol. Microbiol. 59, 231–247 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Mandin, P. & Gottesman, S. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J. 29, 3094–3107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Papenfort, K., Espinosa, E., Casadesus, J. & Vogel, J. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc. Natl Acad. Sci. USA 112, E4772–E4781 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Thomason, M. K., Fontaine, F., De Lay, N. & Storz, G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84, 17–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the laboratories of L.B. and N.F-.B. is funded by the Centre National de la Recherche Scientifique (CNRS) and by the Agence Nationale de la Recherche (grants BLAN07-1_187785 and ANR-3-BSV3-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionello Bossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossi, L., Figueroa-Bossi, N. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat Rev Microbiol 14, 775–784 (2016). https://doi.org/10.1038/nrmicro.2016.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing