Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNAi screening comes of age: improved techniques and complementary approaches

Key Points

  • RNAi has been used for genome-wide screening and other studies that aim to uncover the function of genes and gene networks.

  • Sequence-specific RNAi off-target effects (OTEs) must be taken into consideration when interpreting RNAi data. New experimental and computational strategies such as the detection of microRNA-like seed sequence matches and the use of C911 RNAi controls help to address OTEs and improve data quality.

  • Innovations in RNAi screening include new applications for high-content imaging, screens for synthetic interactions using sensitized cell backgrounds, screening in three-dimensional tissue cultures, parallel screening in different species or using different approaches followed by result integration, and new strategies for in vivo RNAi screening.

  • RNAi and the genome-editing CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 system are complementary technologies, and using these two techniques together should result in improved assay development, screening and validation of screen results.

  • With careful attention to reagent and assay design, data analysis and experimental follow-ups, improved genome-wide RNAi screens are uncovering gene function in all areas of biology.

Abstract

Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene silencing by RNAi.
Figure 2: Strategies for validating RNAi screen results.
Figure 3: Genome-engineering approaches offer new opportunities for assay development, screening and validation.

Similar content being viewed by others

References

  1. Rana, T. M. Illuminating the silence: understanding the structure and function of small RNAs. Nature Rev. Mol. Cell Biol. 8, 23–36 (2007).

    CAS  Google Scholar 

  2. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nature Rev. Genetics 9, 554–566 (2008).

    CAS  Google Scholar 

  3. Grimm, S. The art and design of genetic screens: mammalian culture cells. Nature reviews. Genetics 5, 179–189 (2004).

    CAS  PubMed  Google Scholar 

  4. Zhuang, J. J. & Hunter, C. P. RNA interference in Caenorhabditis elegans: uptake, mechanism, and regulation. Parasitology 139, 560–573 (2012).

    CAS  PubMed  Google Scholar 

  5. Bernards, R., Brummelkamp, T. R. & Beijersbergen, R. L. shRNA libraries and their use in cancer genetics. Nature Methods 3, 701–706 (2006).

    CAS  PubMed  Google Scholar 

  6. Surendranath, V., Theis, M., Habermann, B. H. & Buchholz, F. Designing efficient and specific endoribonuclease-prepared siRNAs. Methods Mol. Biol. 942, 193–204 (2013).

    CAS  PubMed  Google Scholar 

  7. Mohr, S., Bakal, C. & Perrimon, N. Genomic screening with RNAi: results and challenges. Annu. Rev. Biochem. 79, 37–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Panda, D. & Cherry, S. Cell-based genomic screening: elucidating virus-host interactions. Curr. Opin. Virol. 2, 784–792 (2012).

    CAS  PubMed  Google Scholar 

  9. Cherry, S. What have RNAi screens taught us about viral-host interactions? Curr. Opin. Microbiol. 12, 446–452 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cherry, S. Genomic RNAi screening in Drosophila S2 cells: what have we learned about host-pathogen interactions? Curr. Opin. Microbiol. 11, 262–270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Rev. Drug Discov. 8, 129–138 (2009).

    CAS  Google Scholar 

  12. Perrimon, N., Ni, J. Q. & Perkins, L. In vivo RNAi: today and tomorrow. Cold Spring Harb. Perspect. Biol. 2, a003640 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Hu, Y. et al. UP-TORR: online tool for accurate and Up-to-Date annotation of RNAi Reagents. Genetics 195, 37–45 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sin, O., Michels, H. & Nollen, E. A. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbadis.2014.01.015 (2014).

  15. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 3, 199–204 (2006).

    CAS  PubMed  Google Scholar 

  16. Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nature Methods 6, 569–575 (2009). A review on approaches to assay optimization and data analysis relevant to mammalian siRNA and other arrayed RNAi screens.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S. & Sabatini, D. M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods 3, 715–719 (2006).

    CAS  PubMed  Google Scholar 

  18. Mohr, S. E. & Perrimon, N. RNAi screening: new approaches, understandings, and organisms. Wiley Interdiscip. Rev. RNA 3, 145–158 (2012).

    CAS  PubMed  Google Scholar 

  19. Yanos, M. E., Bennett, C. F. & Kaeberlein, M. Genome-wide RNAi longevity screens in Caenorhabditis elegans. Curr. Genom. 13, 508–518 (2012).

    CAS  Google Scholar 

  20. Sigoillot, F. D. & King, R. W. Vigilance and validation: keys to success in RNAi screening. ACS Chem. Biol. 6, 47–60 (2011). This review article discusses many key issues related to RNAi screening in mammalian cells, with a special emphasis on off-target effects (including miRNA-like effects).

    CAS  PubMed  Google Scholar 

  21. Wagner, D. E., Ho, J. J. & Reddien, P. W. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10, 299–311 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Forsthoefel, D. J. et al. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev. Cell 23, 691–704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rink, J. C., Vu, H. T. & Sanchez Alvarado, A. The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development 138, 3769–3780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mony, B. M. et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 505, 681–685 (2014).

    CAS  PubMed  Google Scholar 

  25. Echeverri, C. J. et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods 3, 777–779 (2006).

    CAS  PubMed  Google Scholar 

  26. Schmidt, E. E. et al. GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res. 41, D1021–D1026 (2013).

    CAS  PubMed  Google Scholar 

  27. Sigoillot, F. D. et al. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nature Methods 9, 363–366 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Buehler, E. et al. siRNA off-target effects in genome-wide screens identify signaling pathway members. Scientif. Rep. 2, 428 (2012).

    Google Scholar 

  29. Bhinder, B. & Djaballah, H. Systematic analysis of RNAi reports identifies dismal commonality at gene-level & reveals an unprecedented enrichment in pooled shRNA screens. Comb.Chem. High Throughput Screen 16, 665–681 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bushman, F. D. et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 5, e1000437 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Kaelin, W. G. Jr. Molecular biology. Use and abuse of RNAi to study mammalian gene function. Science 337, 421–422 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genetics 5, 522–531 (2004).

    CAS  Google Scholar 

  33. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  34. Franceschini, A. et al. Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proc. Natl Acad. Sci. USA http:dx.doi.org/10.1073/pnas.1402353111 (2014).

  35. Behlke, M. A. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305–319 (2008).

    CAS  PubMed  Google Scholar 

  36. Yilmazel, B. et al. Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformat. 15, 192 (2014).

    Google Scholar 

  37. Buehler, E., Chen, Y. C. & Martin, S. C911: A bench-level control for sequence specific siRNA off-target effects. PloS ONE 7, e51942 (2012). This paper describes the C911 mismatch control method to distinguish between true- and false-positive hits of a specific siRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bassik, M. C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nature Methods 6, 443–445 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41, 733–746 (2011). This paper describes the development of a sensor assay to identify highly potent shRNAs that are predominantly missed by existing shRNA design algorithms.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kittler, R. et al. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc. Natl Acad. Sci. USA 102, 2396–2401 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kondo, S., Booker, M. & Perrimon, N. Cross-species RNAi rescue platform in Drosophila melanogaster. Genetics 183, 1165–1173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Langer, C. C., Ejsmont, R. K., Schonbauer, C., Schnorrer, F. & Tomancak, P. In vivo RNAi rescue in Drosophila melanogaster with genomic transgenes from Drosophila pseudoobscura. PloS ONE 5, e8928 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Kranz, D. & Boutros, M. A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis. EMBO J. 33, 181–197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotech. 32, 670–676 (2014).

    CAS  Google Scholar 

  47. Heintze, J., Luft, C. & Ketteler, R. A CRISPR CASe for high-throughput silencing. Frontiers Genet. 4, 193 (2013).

    Google Scholar 

  48. Sessions, O. M. et al. Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rohn, J. L. et al. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. J. Cell Biol. 194, 789–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Imberg-Kazdan, K. et al. A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells. Genome Res. 23, 581–591 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Neumuller, R. A. et al. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci. Signal. 6, ra70 (2013). This report presents results obtained using related image-based nucleolar size assays, performed using genome-wide RNAi screening in D. melanogaster cells and genetic screening in yeast.

    PubMed  PubMed Central  Google Scholar 

  52. Dixon, S. J., Andrews, B. J. & Boone, C. Exploring the conservation of synthetic lethal genetic interaction networks. Commun. Integr. Biol. 2, 78–81 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Frost, A. et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 149, 1339–1352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Joyce, E. F., Williams, B. R., Xie, T. & Wu, C. T. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet. 8, e1002667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin, Z. et al. A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nature Cell Biol. 15, 860–871 (2013).

    CAS  PubMed  Google Scholar 

  56. Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).

    CAS  PubMed  Google Scholar 

  57. Laufer, C., Fischer, B., Billmann, M., Huber, W. & Boutros, M. Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. Nature Methods 10, 427–431 (2013).

    CAS  PubMed  Google Scholar 

  58. Sundaramurthy, V. et al. Integration of chemical and RNAi multiparametric profiles identifies triggers of intracellular mycobacterial killing. Cell Host Microbe 13, 129–142 (2013).

    CAS  PubMed  Google Scholar 

  59. Snijder, B. et al. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Systems Biol. 8, 579 (2012).

    Google Scholar 

  60. Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8, 312–316 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Baryshnikova, A. et al. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods Enzymol. 470, 145–179 (2010).

    CAS  PubMed  Google Scholar 

  62. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nature Methods 8, 341–346 (2011). This paper describes a large-scale combinatorial RNAi screen in D. melanogaster cells by analysing synthetic genetic interactions.

    CAS  PubMed  Google Scholar 

  63. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Steckel, M. et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res. 22, 1227–1245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Koh, J. L. et al. COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines. Nucleic Acids Res. 40, D957–D963 (2012).

    CAS  PubMed  Google Scholar 

  67. Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2, 172–189 (2012).

    CAS  PubMed  Google Scholar 

  68. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011). This paper describes an in vivo RNAi screen of known chromatin regulators in mice to find new therapeutic targets in acute myeloid leukaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Beronja, S. et al. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501, 185–190 (2013). This paper describes an elegant, genome-wide in vivo RNAi screen for oncogenic growth in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller, P. G. et al. In Vivo RNAi screening identifies a leukemia-specific dependence on integrin β 3 signaling. Cancer Cell 24, 45–58 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wuestefeld, T. et al. A Direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153, 389–401 (2013).

    CAS  PubMed  Google Scholar 

  73. Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Livshits, G. & Lowe, S. W. Accelerating cancer modeling with RNAi and nongermline genetically engineered mouse models. Cold Spring Harbor Protoc. http://dx.doi.org/10.1101/pdb.top069856 (2013).

  75. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).

    CAS  PubMed  Google Scholar 

  76. Neely, G. G. et al. A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene. Cell 143, 628–638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Neumuller, R. A. et al. Stringent analysis of gene function and protein-protein interactions using fluorescently tagged genes. Genetics 190, 931–940 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pastor-Pareja, J. C. & Xu, T. Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and perlecan. Dev. Cell 21, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Venken, K. J. et al. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods 8, 737–743 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Firnhaber, C. & Hammarlund, M. Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function. PLoS Genet. 9, e1003921 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Qadota, H. et al. Establishment of a tissue-specific RNAi system in C. elegans. Gene 400, 166–173 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Port, F., Chen, H. M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1405500111 (2014).

  83. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 4, 44–57 (2009).

    Google Scholar 

  84. Vinayagam, A. et al. Protein complex-based analysis framework for high-throughput data sets. Sci. Signal. 6, rs5 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. Kwon, Y. et al. The Hippo signaling pathway interactome. Science 342, 737–740 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shamu, C. E., Wiemann, S. & Boutros, M. On target: a public repository for large-scale RNAi experiments. Nature Cell Biol. 14, 115 (2012).

    CAS  PubMed  Google Scholar 

  87. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    CAS  PubMed  Google Scholar 

  88. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Burckstummer, T. et al. A reversible gene trap collection empowers haploid genetics in human cells. Nature Methods 10, 965–971 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  92. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014). This report provides examples of large-scale CRISPR–Cas9-induced gene knockout screening in mammalian cells and includes a comparison of knockout versus shRNA results.

    CAS  PubMed  Google Scholar 

  93. Koike-Yusa, H., Li, Y., Tan, E. P., Velasco- Herrera Mdel, C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotech. 32, 267–273 (2014).

    CAS  Google Scholar 

  94. Terns, R. M. & Terns, M. P. CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet 30, 111–118 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Santhakumar, D. et al. Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc. Natl Acad. Sci. USA 107, 13830–13835 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Keklikoglou, I. et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31, 4150–4163 (2012).

    CAS  PubMed  Google Scholar 

  97. Leivonen, S. K. et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol. Oncol. 8, 93–104 (2014).

    CAS  PubMed  Google Scholar 

  98. Du, L. et al. A high-throughput screen identifies miRNA inhibitors regulating lung cancer cell survival and response to paclitaxel. RNA Biol. 10, 1700–1713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Neijenhuis, S., Bajrami, I., Miller, R., Lord, C. J. & Ashworth, A. Identification of miRNA modulators to PARP inhibitor response. DNA Repair 12, 394–402 (2013).

    CAS  PubMed  Google Scholar 

  100. Otto, E. A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nature Genet. 42, 840–850 (2010).

    CAS  PubMed  Google Scholar 

  101. Mirkin, E. V. & Mirkin, S. M. To switch or not to switch: at the origin of repeat expansion disease. Mol. Cell 53, 1–3 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kung, J. T., Colognori, D. & Lee, J. T. Long noncoding RNAs: past, present, and future. Genetics 193, 651–669 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Thoma, C. R. et al. A high-throughput-compatible 3D microtissue co-culture system for phenotypic RNAi screening applications. J. Biomolecular Screen. 18, 1330–1337 (2013).

    Google Scholar 

  104. Marhefka, J. N. & Abbud-Antaki, R. A. Validation of the Cancer BioChip System as a 3D siRNA screening tool for breast cancer targets. PloS ONE 7, e46086 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Drosophila RNAi Screening Center is supported by US National Institutes of Health (NIH) NIGMS R01 GM067761 (N.P.). S.E.M. receives additional support from the Dana Farber/Harvard Cancer Center, which is supported in part by NCI Cancer Center Support Grant NIH 5 P30 CA06516. C.E.S. and J.A.S. are supported by funds from Harvard Medical School. R.A.N. is supported by a Human Frontier Science Program long-term fellowship. N.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Perrimon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Further information

C911 calculator

Haystack

Online GESS

PowerPoint slides

Glossary

Genetic screens

Identification of the organisms or cells that display a mutant phenotype of interest following large-scale disruption of genes; for example, by using mutagens.

Pooled format RNAi screens

Screens in which pools of reagents are introduced together into the cell population; for mammalian cell screening this is typically carried out with the goal of integrating just one of the short hairpin RNAs into each cell. Positive reagents are identified by comparing the abundance of any given reagent in the cell population before and after selection.

Arrayed format RNAi screens

Screens in which each reagent (or a small pool of reagents directed against the same gene) is introduced separately into cells.

miRNA mimics

Short, double-stranded RNAs that, when introduced into cells, mimic endogenous microRNAs by activating post-transcriptional repression of target genes.

Seed region

Base pairs 2–8 of the fully processed siRNA. It can mediate microRNA-like effects even in the absence of perfect complementarity between the remainder of its sequence and that of the transcript.

Multiplicity of infection

(MOI). During a viral infection, the ratio of the number of infectious virions to the number of targeted cells.

Gene-trap retrovirus approach

Screening using mutagenic retroviral integration into genes. The integrated retrovirus can be used as a trap for identifying the genes disrupted in each resulting phenotype.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohr, S., Smith, J., Shamu, C. et al. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15, 591–600 (2014). https://doi.org/10.1038/nrm3860

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing