Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles for chromatin as a signal integration and storage platform

Key Points

  • The histone tails contain a plethora of post-translational modification (PTM) sites and are modified in various ways. One explanation for this exceptionally dense region of PTMs within chromatin is to provide a platform for signal integration and storage.

  • Histone phosphorylation seems to be a mechanism for rapid alteration of the epigenetic state. Phosphorylation can promote the binding of proteins to chromatin as well as antagonize the read-out, deposition or removal of long-lived histone tail PTMs.

  • Metabolic states may directly regulate the activity of many chromatin-modifying enzymes.

  • How activated signalling cascades control chromatin regulators is poorly understood. The best-characterized examples so far include direct regulation of the chromatin machinery through phosphorylation–dephosphorylation of enzymes and histone chaperones to tailor their activity.

  • Signal storage and output on and from chromatin may work as a biological 'digital-to-analogue' converter, integrating the on and off signals received over a time course to control the amplitude of gene transcription.

  • During critical developmental periods, an organism is more sensitive to environmental inputs. This is partially due to increased communication between activated signalling pathways and epigenetic regulators, as well as an increased ability to lay down long-lived epigenetic marks.

Abstract

Cells of a multicellular organism, all containing nearly identical genetic information, respond to differentiation cues in variable ways. In addition, cells are plastic, able to execute their specialized function while maintaining the ability to adapt to environmental changes. This is achieved through multiple mechanisms, including the direct regulation of chromatin-based processes in response to stimuli. How signal transduction pathways directly communicate with chromatin to change the epigenetic landscape is poorly understood. The preponderance of covalent modifications on histone tails coupled with a relatively small number of functional outputs raises the possibility that chromatin acts as a site of signal integration and storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The histone tails act as a signal storage and converter device.
Figure 2: Possible modes of signalling to chromatin.
Figure 3: AKT signalling to chromatin-modifying enzymes.
Figure 4: Histone-mimic sequences may be an integral part of signal-induced chromatin-mediated processes.

Similar content being viewed by others

References

  1. Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stark, G. & Darnell, J. The JAK–STAT pathway at twenty. Immunity 36, 503–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kodadek, T., Sikder, D. & Nalley, K. Keeping transcriptional activators under control. Cell 127, 261–264 (2006).

    CAS  PubMed  Google Scholar 

  4. Young, N. et al. High throughput characterization of combinatorial histone codes. Mol. Cell Proteom. 8, 2266–2284 (2009).

    CAS  Google Scholar 

  5. Strahl, B. & Allis, C. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  6. Cheung, P., Allis, C. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    CAS  PubMed  Google Scholar 

  7. Greer, E. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schreiber, S. & Bernstein, B. Signaling network model of chromatin. Cell 111, 771–778 (2002).

    CAS  PubMed  Google Scholar 

  9. Bao, Y. Chromatin response to DNA double-strand break damage. Epigenomics 3, 307–328 (2011).

    CAS  PubMed  Google Scholar 

  10. Conaway, J. W. Introduction to theme “Chromatin, epigenetics, and transcription”. Annu. Rev. Biochem. 81, 61–64 (2012).

    CAS  PubMed  Google Scholar 

  11. Greer, E. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Rev. Genet. 13, 343–400 (2012).

    CAS  PubMed  Google Scholar 

  12. Spitale, R., Tsai, M.-C. & Chang, H. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 6, 539–582 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Iberg, A. et al. Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem. 283, 3006–3016 (2008).

    CAS  PubMed  Google Scholar 

  14. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–940 (2007). This paper was among the first to describe how methylation of one histone tail residue can directly influence the deposition and read-out of an adjacent methylation event.

    CAS  PubMed  Google Scholar 

  15. Hyllus, D. et al. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21, 3369–3449 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nature Struct. Mol. Biol. 18, 777–859 (2011).

    CAS  Google Scholar 

  17. Qiu, Y. et al. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes Dev. 26, 1376–1467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suganuma, T. & Workman, J. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473–572 (2011).

    CAS  PubMed  Google Scholar 

  19. Taverna, S., Li, H., Ruthenburg, A., Allis, C. & Patel, D. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1065 (2007).

    CAS  Google Scholar 

  20. Ruthenburg, A. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011). Describes how BPTF (bromodomain PHD finger transcription factor; which harbours multiple reader domains) can simultaneously bind two activating histone marks on different histone tails. Provided an early example of a multivalent histone tail read-out.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nature Rev. Mol. Cell Biol. 13, 153–167 (2012).

    CAS  Google Scholar 

  22. Ripperger, J. & Merrow, M. Perfect timing: epigenetic regulation of the circadian clock. FEBS Lett. 585, 1406–1411 (2011).

    CAS  PubMed  Google Scholar 

  23. Zee, B., Levin, R., Dimaggio, P. & Garcia, B. Global turnover of histone post-translational modifications and variants in human cells. Epigenetics Chromatin 3, 22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Barth, T. & Imhof, A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem. Sci. 35, 618–644 (2010).

    CAS  PubMed  Google Scholar 

  25. Banerjee, T. & Chakravarti, D. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol. 31, 4858–4931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baek, S. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42, 274–358 (2011).

    CAS  PubMed  Google Scholar 

  27. Wei, Y., Yu, L., Bowen, J., Gorovsky, M. & Allis, C. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–208 (1999).

    CAS  PubMed  Google Scholar 

  28. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–920 (2000).

    CAS  PubMed  Google Scholar 

  29. Thomson, S., Clayton, A. & Mahadevan, L. Independent dynamic regulation of histone phosphorylation and acetylation during immediate–early gene induction. Mol. Cell 8, 1231–1272 (2001).

    CAS  PubMed  Google Scholar 

  30. Vicent, G. et al. Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol. Cell 24, 367–448 (2006).

    CAS  PubMed  Google Scholar 

  31. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    CAS  PubMed  Google Scholar 

  32. Dawson, M. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461, 819–822 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liokatis, S. et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nature Struct. Mol. Biol. 19, 819–823 (2012). Describes the hierarchy of histone tail phosphorylation events and the crosstalk with adjacent modifications.

    CAS  Google Scholar 

  34. Metzger, E. et al. Phosphorylation of histone H3T6 by PKCβI controls demethylation at histone H3K4. Nature 464, 792–798 (2010).

    CAS  PubMed  Google Scholar 

  35. Lau, P. & Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl Acad. Sci. USA 108, 2801–2807 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, W. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nature Rev. Mol. Cell Biol. 12, 104–121 (2011).

    CAS  Google Scholar 

  38. Xiong, S., Salazar, G., Patrushev, N. & Alexander, R. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem. 286, 5289–5388 (2011).

    CAS  PubMed  Google Scholar 

  39. Latham, J., Chosed, R., Wang, S. & Dent, S. Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell 146, 709–728 (2011). The first description of the crosstalk between marks on histones and non-histone proteins as a true 'signalling-out event.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, C. & Thompson, C. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Melvin, A. & Rocha, S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell. Signal. 24, 35–78 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, X. et al. Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res. 70, 4214–4235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012). Shows how increased levels of 2-hydroxyglutarate, resulting from mutations in isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 that are found in cancers, block demethylase activity to prevent differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    CAS  PubMed  Google Scholar 

  46. Fujiki, R. et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459, 455–464 (2009).

    CAS  PubMed  Google Scholar 

  47. Fujiki, R. et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480, 557–617 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanover, J., Krause, M. & Love, D. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nature Rev. Mol. Cell Biol. 13, 312–333 (2012).

    CAS  Google Scholar 

  49. Kaelin, W. Jr. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sassone-Corsi, P. Physiology. When metabolism and epigenetics converge. Science 339, 148–150 (2013).

    CAS  PubMed  Google Scholar 

  51. Yang, X.-J. & Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449–510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cha, T.-L. et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306–310 (2005).

    CAS  PubMed  Google Scholar 

  53. Nacerddine, K. et al. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J. Clin. Invest. 122, 1920–1952 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, W.-C. & Chen, C.-C. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell. Biol. 25, 6592–7194 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  56. stève, P.-O. et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nature Struct. Mol. Biol. 18, 42–50 (2011).

    Google Scholar 

  57. Hervouet, E. et al. Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS ONE 5, e11333 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818–821 (2008).

    CAS  PubMed  Google Scholar 

  59. Avvakumov, G. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825 (2008).

    CAS  PubMed  Google Scholar 

  60. Hashimoto, H. et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hennessy, B., Smith, D., Ram, P., Lu, Y. & Mills, G. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Rev. Drug Discov. 4, 988–1992 (2005).

    CAS  Google Scholar 

  62. Bernstein, B. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  63. Svotelis, A. et al. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERα ligand dependency. EMBO J. 30, 3947–3961 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Creyghton, M. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Visel, A. et al. ChIP–seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hargreaves, D. & Crabtree, G. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Forcales, S. et al. Signal-dependent incorporation of MyoD–BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 31, 301–317 (2012).

    CAS  PubMed  Google Scholar 

  68. Palacios, D. et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7, 455–524 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bedford, M. & Clarke, S. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao, Q. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nature Struct. Mol. Biol. 16, 304–315 (2009).

    CAS  Google Scholar 

  71. Liu, F. et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19, 283–377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Levy, D. et al. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nature Immunol. 12, 29–65 (2011).

    CAS  Google Scholar 

  73. Day, J. & Sweatt, J. Epigenetic mechanisms in cognition. Neuron 70, 813–842 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maze, I., Noh, K.-M. & Allis, C. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 38, 3–22 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. West, A. & Greenberg, M. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Persp. Biol. 3, a005744 (2011).

    Google Scholar 

  76. Okuno, H. Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci. Res. 69, 175–261 (2011).

    CAS  PubMed  Google Scholar 

  77. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–112 (2004).

    CAS  PubMed  Google Scholar 

  78. Michod, D. et al. Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74, 122–157 (2012). Demonstrates that storage of a cellular experience in neurons is partly mediated through marking activity-induced genes with histone variant H3.3.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ng, R. & Gurdon, J. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nature Cell Biol. 10, 102–111 (2008).

    CAS  PubMed  Google Scholar 

  80. Su, D. et al. Structural basis for recognition of H3K56-acetylated histone H3–H4 by the chaperone Rtt106. Nature 483, 104–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chang, Y. et al. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nature Commun. 2, 533 (2011).

    Google Scholar 

  82. Fischle, W., Wang, Y. & Allis, C. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–484 (2003).

    CAS  PubMed  Google Scholar 

  83. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010). This clinically important paper shows that a histone-mimic compound (I-BET) that binds the acetylated Lys residues in the binding pocket of BRD2, BRD3 and BRD4 can prevent inflammation-induced gene expression in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Marazzi, I. et al. Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428–433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chin, H. et al. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res. 35, 7313–7336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sampath, S. et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27, 596–1204 (2007).

    CAS  PubMed  Google Scholar 

  87. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev. 19, 815–826 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, H. et al. p53 requires an intact C-terminal domain for DNA binding and transactivation. J. Mol. Biol. 415, 843–897 (2012).

    CAS  PubMed  Google Scholar 

  89. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–113 (2007).

    CAS  PubMed  Google Scholar 

  90. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–413 (2004).

    CAS  PubMed  Google Scholar 

  91. West, L. & Gozani, O. Regulation of p53 function by lysine methylation. Epigenomics 3, 361–370 (2011).

    CAS  PubMed  Google Scholar 

  92. Kruse, J.-P. & Gu, W. Modes of p53 regulation. Cell 137, 609–631 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cui, G. et al. PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53. Nature Struct. Mol. Biol. 19, 916–924 (2012).

    CAS  Google Scholar 

  94. Badeaux, A. et al. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. J. Biol. Chem. 287, 429–466 (2012).

    CAS  PubMed  Google Scholar 

  95. Park, S. et al. Identification of Akt interaction protein PHF20/TZP that transcriptionally regulates p53. J. Biol. Chem. 287, 11151–11214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Brookes, E. & Pombo, A. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep. 10, 1213–1219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Levine, M. Paused RNA polymerase II as a developmental checkpoint. Cell 145, 502–513 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hsin, J.-P., Sheth, A. & Manley, J. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334, 683–689 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1728 (2012).

    CAS  PubMed  Google Scholar 

  100. Ranuncolo, S., Ghosh, S., Hanover, J., Hart, G. & Lewis, B. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J. Biol. Chem. 287, 23549–23561 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sims, R. et al. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332, 99–202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang, Y. et al. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 40, 1016–1023 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Canani, R. et al. Epigenetic mechanisms elicited by nutrition in early life. Nutr. Res. Rev. 24, 198–403 (2011).

    CAS  PubMed  Google Scholar 

  104. Symonds, M., Sebert, S., Hyatt, M. & Budge, H. Nutritional programming of the metabolic syndrome. Nature Rev. Endocrinol. 5, 604–614 (2009).

    CAS  Google Scholar 

  105. Walker, C. & Ho, S.-M. Developmental reprogramming of cancer susceptibility. Nature Rev. Cancer 12, 479–565 (2012).

    CAS  Google Scholar 

  106. Trollope, A. et al. Stress, epigenetic control of gene expression and memory formation. Exp. Neurol. 233, 3–14 (2012).

    CAS  PubMed  Google Scholar 

  107. Zovkic, I. & Sweatt, J. Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38, 77–93 (2012).

    PubMed  PubMed Central  Google Scholar 

  108. Kantojärvi, K. et al. Analysis of 9p24 and 11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is associated with ASDs in Finnish sample. Psychiatr. Genet. 20, 102–108 (2010).

    PubMed  Google Scholar 

  109. Wang, K.-S., Liu, X., Zhang, Q., Wu, L.-Y. & Zeng, M. Genome-wide association study identifies 5q21 and 9p24.1 (KDM4C) loci associated with alcohol withdrawal symptoms. J. Neural Transm. 119, 425–433 (2012).

    CAS  PubMed  Google Scholar 

  110. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    CAS  PubMed  Google Scholar 

  111. Ounap, K. et al. A novel c.2T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability. Eur. J. Med. Genet. 55, 178–184 (2012).

    PubMed  Google Scholar 

  112. Kleefstra, T. et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 91, 73–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. O'Roak, B. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Laumonnier, F. et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42, 780–786 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ong, C.-T. & Corces, V. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature Rev. Genet. 12, 283–293 (2011).

    CAS  PubMed  Google Scholar 

  116. Boeke, J. et al. Phosphorylation of SU(VAR)3-9 by the chromosomal kinase JIL-1. PLoS ONE 5, e10042 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Chi, Y. et al. Identification of CDK2 substrates in human cell lysates. Genome Biol. 9, R149 (2008).

    PubMed  PubMed Central  Google Scholar 

  118. Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, S. et al. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev. 24, 2531–2542 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Spektor, T., Congdon, L., Veerappan, C. & Rice, J. The UBC9 E2 SUMO conjugating enzyme binds the PR-Set7 histone methyltransferase to facilitate target gene repression. PLoS ONE 6, e22785 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen, S. et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nature Cell Biol. 12, 1108–1122 (2010).

    CAS  PubMed  Google Scholar 

  122. Wei, Y. et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nature Cell Biol. 13, 87–181 (2011).

    CAS  PubMed  Google Scholar 

  123. Baba, A. et al. PKA-dependent regulation of the histone lysine demethylase complex PHF2–ARID5B. Nature Cell Biol. 13, 668–743 (2011).

    PubMed  Google Scholar 

  124. Liu, W. et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466, 508–512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Feng, Q. et al. Biochemical control of CARM1 enzymatic activity by phosphorylation. J. Biol. Chem. 284, 36167–36241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Higashimoto, K., Kuhn, P., Desai, D., Cheng, X. & Xu, W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl Acad. Sci. USA 104, 12318–12323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Estève P. O. et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl Acad. Sci. USA 106, 5076–5081 (2009)

    PubMed  PubMed Central  Google Scholar 

  128. Lee, B. & Muller M. T. SUMOylation enhances DNA methyltransferase 1 activity. Biochem. J. 421, 449–461 (2009)

    CAS  PubMed  Google Scholar 

  129. Sugiyama Y. et al. The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1δ/ɛ. Biochem J. 427, 489–497 (2010)

    CAS  PubMed  Google Scholar 

  130. Lavoie G. & St-Pierre Y. Phosphorylation of human DNMT1: implication of cyclin-dependent kinases. Biochem. Biophys. Res. Commun. 409, 187–192 (2011)

    CAS  PubMed  Google Scholar 

  131. Bourachot, B., Yaniv, M. & Muchardt, C. Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation. EMBO J. 22, 6505–6515 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Galisson, F. et al. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 10, M110.004796 (2011).

    PubMed  Google Scholar 

  133. Hsiao, H.-H., Meulmeester, E., Frank, B., Melchior, F. & Urlaub, H. “ChopNSpice, ” a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Mol. Cell Proteom. 8, 2664–2675 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Brookes and E. Greer for critical reading of the manuscript. A.I.B. is supported by the Developmental Neurology Institutional National Research Service Award (NRSA), Training Grant, T32 NS007473. Research in the Shi lab is supported by grants from the NIH (CA118478, MH096066, GM058012 and GM071044) and the Ellison Medical Foundation. Y. Shi is an American Cancer Society Research Professor. The authors apologize to colleagues whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aimee I. Badeaux or Yang Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Yang Shi's homepage

PhosphoSitePlus

Glossary

Writer

Enzyme with the ability to add chemical modifications to DNA or histones.

Eraser

Enzyme with the ability to remove chemical modifications from DNA or histones.

Reader

A protein that binds histones or DNA only when certain chemical modifications are present (or absent). They often contain similar protein domains for recognizing similar modifications; for example, many chromodomain containing proteins bind to di- or trimethylated Lys 9 on histone H3.

Histone variants

Multiple genes encode for each histone family (H1, H3, H4, H2A and H2B), resulting in family members with slight sequence variation (for example, H3.1 and H3.3). The subtle differences between family members can lead to different functional outcomes once incorporated into nucleosomes, and therefore histone variant utilization offers another level of control for transcription, replication and DNA repair.

Nucleosome remodellers

ATP-dependent enzymes that catalyse a shift in the nucleosome position relative to the DNA sequence. The various families of remodellers use slightly different mechanisms to facilitate nucleosome repositioning.

Histone chaperones

Proteins that associate with histones to facilitate a number of functions, including histone transfer, deposition into or eviction from chromatin, histone variant utilization and storage.

Bivalent domains

Chromatin regions that harbour 'active' and 'repressive' histone modifications. Bivalent domains are thought to mark genes that are expressed at low levels only, but that are poised for activation upon a differentiation cue or other signalling events.

Primary response genes

(PRGs). A gene class that is rapidly induced upon cellular stimulation. Transcription of this gene class occurs independently of new protein production, via proteins that are already present in the cell nucleus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badeaux, A., Shi, Y. Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14, 211–224 (2013). https://doi.org/10.1038/nrm3545

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing