Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte

Key Points

  • The growth and the onset of meiotic maturation of the mammalian oocyte are controlled by bidirectional interactions between the oocyte and the surrounding somatic cells.

  • Junctional complexes and transzonal projections (TZPs) form the structural basis for the passage of signalling molecules and metabolic substrates that support oocyte growth.

  • The meiotic spindle forms through self-organization of microtubules and motor proteins in response to a RAN GTPase-mediated chromatin signal in the absence of centriole-containing centrosomes.

  • Meiotic chromatin provides a signal for the establishment of oocyte cortical polarity, which required for asymmetric meiotic cell divisions and leads to polar body extrusion.

  • Asymmetric positioning of the meiosis I spindle is established through actin-based forces that are regulated by actin nucleating factors, including a formin-family protein and the actin-related protein 2/3 (ARP2/3) complex.

  • Actin-driven cytoplasmic streaming contributes to the establishment and maintenance of oocyte polarity, and the parameters of post-fertilization streaming may be prognostic of the developmental potential of the embryo.

Abstract

Mammalian oocytes go through a long and complex developmental process while acquiring the competencies that are required for fertilization and embryogenesis. Recent advances in molecular genetics and quantitative live imaging reveal new insights into the molecular basis of the communication between the oocyte and ovarian somatic cells as well as the dynamic cytoskeleton-based events that drive each step along the pathway to maturity. Whereas self-organization of microtubules and motor proteins direct meiotic spindle assembly for achieving genome reduction, actin filaments are instrumental for spindle positioning and the establishment of oocyte polarity needed for extrusion of polar bodies. Meiotic chromatin provides key instructive signals while being 'chauffeured' by both cytoskeletal systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Follicle development and interaction of the oocyte with somatic cells.
Figure 2: Maturation of a mammalian oocyte.
Figure 3: Features of the assembling meiotic spindle.
Figure 4: RAN mediates a signal from chromatin to induce cortical actomyosin assembly.
Figure 5: Possible mechanisms of force generation in spindle and chromosome movement.
Figure 6: Patterns of cytoplasmic streaming in the oocyte of several animal models.

Similar content being viewed by others

References

  1. Albertini, D. F. Regulation of meiotic maturation in the mammalian oocyte: inteplay between exogenous cues and the microtubule cytoskeleton. BioEssays 14, 97–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Burgoyne, P. S., Mahadevaiah, S. K. & Turner, J. M. The consequences of asynapsis for mammalian meiosis. Nature Rev. Genet. 10, 207–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Downs, S. M. Regulation of the G2/M transition in rodent oocytes. Mol. Reprod. Dev. 77, 566–585 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watanabe, Y. Geometry and force behind kinetochore orientation: lessions from meiosis. Nature Rev. Mol. Cell Biol. 13, 370–382 (2012).

    Article  CAS  Google Scholar 

  5. Pan, H. et al. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev. Biol. 286, 493–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Park, J. Y. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 30, 682–684 (2004). Demonstrates that the production of EGF-like proteins by mural granulosa cells is essential to trigger the events within the cumulus cells–oocyte complex that will initiate the resumption of meiosis in oocytes.

    Article  CAS  Google Scholar 

  7. Robinson, J. W. et al. Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Dev. Biol. 366, 308–316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simon, A. M., Goodenough, D. A., Li, E. & Paul, D. L. Female infertility in mice lacking connexin 37. Nature 385, 525–529 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Carabatsos, M. J., Sellitto, C., Goodenough, D. A. & Albertini, D. F. Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226, 167–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Dong, J. W. et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Carabatsos, M. J., Elvin, J., Matzuk, M. M. & Albertini, D. F. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev. Biol. 204, 373–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Combelles, C. M. H., Carabatsos, M. J., Kumar, T. R., Matzuk, M. M. & Albertini, D. F. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol. Reprod. Devel. 69, 347–355 (2004). Gene deletion studies and rescue strategies show that FSH directly regulates the formation and stability of TZPs, which are the primary cellular device used to integrate metabolism of the oocyte and its surrounding somatic cells.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, M. T., Freeman, E. A., Gardner, D. K. & Hunt, P. A. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol. Reprod. 77, 2–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Sugiura, K., Pendola, F. L. & Eppig, J. J. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 20–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Su, Y. Q. et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135, 111–121 (2008). Landmark paper identifying the role of oocyte-derived paracrine factors in the regulation of sterol metabolism within mammalian oocytes.

    Article  CAS  PubMed  Google Scholar 

  16. Norris, R. P. et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136, 1869–1878 (2009). Shows that cGMP is the principle cumulus cell modulator of oocyte meiotic arrest and that passage of this signal through gap junctions assures maintenance of oocyte protein kinase A activity and hence cell cycle arrest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Norris, R. P. et al. Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development 135, 3229–3238 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Longo, F. J. & Chen, D. Y. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev. Biol. 107, 382–394 (1985). First demonstration that meiotic chromatin is implicated in the induction of oocyte cortical polarity. Demonstrates a crucial role for actin but not microtubules in the movement and maintenance of meiotic chromatin at the subcortical location.

    Article  CAS  PubMed  Google Scholar 

  19. Van Blerkom, J. Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc. Natl Acad. Sci. USA 88, 5031–5035 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Albertini, D. F. Cytoplasmic reorganization during the resumption of meiosis in cultured preovulatory rat oocytes. Dev. Biol. 120, 121–131 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Maro, B., Howlett, S. K. & Webb, M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J. Cell Biol. 101, 1665–1672 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Messinger, S. M. & Albertini, D. F. Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J. Cell Sci. 100, 289–298 (1991).

    PubMed  Google Scholar 

  23. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Albertini, D. F. et al. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum. Reprod. 24, 2114–2123 (2009).

    Article  PubMed  Google Scholar 

  25. Verlhac, M. H., Lefebvre, C., Guillaud, P., Rassinier, P. & Maro, B. Asymmetric division in mouse oocytes: with or without Mos. Curr. Biol. 10, 1303–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Combelles, C. M. & Albertini, D. F. Microtubule patterning during meiotic maturation in mouse oocytes is determined by cell cycle-specific sorting and redistribution of γ-tubulin. Dev. Biol. 239, 281–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Jones, K. T. & Lane, S. I. Chromosomal, metabolic, environmental, and hormonal origins of aneuploidy in mammalian oocytes. Exp. Cell Res. 318, 1394–1399 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Kitajima, T. S., Ohsugi, M. & Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146, 568–581 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Schatten, G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165, 299–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Gueth-Hallonet, C. et al. γ-tubulin is present in acentriolar MTOCs during early mouse development. J. Cell Sci. 103, 157–166 (1993).

    Google Scholar 

  31. Ozil, J. P. & Huneau, D. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development 128, 917–928 (2001).

    CAS  PubMed  Google Scholar 

  32. Szollosi, D. & Ozil, J. P. De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol. Cell 72, 61–66 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Verlhac, M. H., de Pennart, H., Maro, B., Cobb, M. H. & Clarke, H. J. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev. Biol. 158, 330–340 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Verlhac, M. H. et al. Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122, 815–822 (1996).

    CAS  PubMed  Google Scholar 

  35. Barrett, S. L. & Albertini, D. F. Allocation of γ-tubulin between oocyte cortex and meiotic spindle influences asymmetric cytokinesis in the mouse oocyte. Biol. Reprod. 76, 949–957 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007). Elucidates the long-suspected driving force for acentriolar spindle assembly in mouse oocytes using live-cell imaging of MTOCs and tubulin to reconstruct the events involved in meiotic spindle assembly.

    Article  CAS  PubMed  Google Scholar 

  37. Courtois, A., Schuh, M., Ellenberg, J. & Hiiragi, T. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198, 357–370 (2012). Shows that the transition of a barrel-shaped meiotic spindle to that of a pointed mitotic spindle in blastomeres of the mouse embryo occurs through the gradual reduction of polar MTOCs at successive stages of development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric cell division. Nature Cell Biol. 11, 365–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Morin, X. & Bellaiche, Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev. Cell 21, 102–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Albertini, D. F. & Barrett, S. L. The developmental origins of mammalian oocyte polarity. Semin. Cell Dev. Biol. 15, 599–606 (2004).

    Article  PubMed  Google Scholar 

  41. Van Blerkom, J. & Bell, H. Regulation of development in the fully grown mouse oocyte: chromosome-mediated temporal and spatial differentiation of the cytoplasm and plasma membrane. J. Embry. Exp. Morph. 93, 213–238 (1986).

    CAS  Google Scholar 

  42. Connors, S. A., Kanatsu-Shinohara, M., Schultz, R. M. & Kopf, G. S. Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs. Dev. Biol. 200, 103–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Maro, B., Johnson, M. H., Webb, M. & Flach, G. Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J. Embryol. Exp. Morphol. 92, 11–32 (1986).

    CAS  PubMed  Google Scholar 

  44. Deng, M. et al. Chromatin-mediated cortical granule redistribution is responsible for the formation of the cortical granule-free domain in mouse eggs. Dev. Biol. 257, 166–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Deng, M., Suraneni, P., Schultz, R. M. & Li, R. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev. Cell 12, 301–308 (2007). Shows proximity-dependent induction of oocyte cortical polarity by chromatin through a mechanism that probably involves a RAN·GTP gradient.

    Article  CAS  PubMed  Google Scholar 

  46. Duncan, F. E., Moss, S. B., Schultz, R. M. & Williams, C. J. PAR-3 defines a central subdomain of the cortical actin cap in mouse eggs. Dev. Biol. 280, 38–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Halet, G. & Carroll, J. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev. Cell 12, 309–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Deng, M., Williams, C. J. & Schultz, R. M. Role of MAP kinase and myosin light chain kinase in chromosome-induced development of mouse egg polarity. Dev. Biol. 278, 358–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, Y. G protein control of microtubule assembly. Annu. Rev. Cell Dev. Biol. 20, 867–894 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Kalab, P. & Heald, R. The RanGTP gradient — a GPS for the mitotic spindle. J. Cell Sci. 121, 1577–1586 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309, 1373–1376 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Dumont, J. et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J. Cell Biol. 176, 295–305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, S. C. et al. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PloS ONE 6, e18392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yi, K. et al. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nature Cell Biol. 13, 1252–1258 (2011). Documents the presence of cytoplasmic streaming in meiosis II mouse oocytes, its dependence on the ARP2/3 complex and its role in providing the dynamic force that maintains subcortical spindle positioning.

    Article  CAS  PubMed  Google Scholar 

  56. Bielak-Zmijewska, A., Kolano, A., Szczepanska, K., Maleszewski, M. & Borsuk, E. Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos. Dev. Biol. 322, 21–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Sun, S. C. et al. WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes. Cell Cycle 10, 1853–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Zheng, P., Baibakov, B., Wang, X. H. & Dean, J. PtdIns(3,4,5)P3 is constitutively synthesized and required for spindle translocation during meiosis in mouse oocytes. J Cell Sci. 21 Dec 2012 (doi:10.1242/jcs.118042).

  59. Na, J. & Zernicka-Goetz, M. Asymmetric positioning and organization of the meiotic spindle of mouse oocytes requires CDC42 function. Cur.Biol. 16, 1249–1254 (2006).

    Article  CAS  Google Scholar 

  60. Luo, J., McGinnis, L. K. & Kinsey, W. H. Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex. Mol. Reprod. Dev. 76, 819–831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kubiak, J. Z. & Ciemerych, M. A. Cell cycle regulation in early mouse embryos. Novartis Found. Symp. 237, 79–89 (2001).

    CAS  PubMed  Google Scholar 

  62. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Dumont, J. et al. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301, 254–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Schuh, M. & Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Cur. Biol. 18, 1986–1992 (2008). Uses a live F-actin probe to observe actin dynamics during meiosis I spindle migration and proposes a model in which a pulling force is produced through myosin II acting on an F-actin network to connect the spindle pole with the cortex.

    Article  CAS  Google Scholar 

  65. Azoury, J., Lee, K. W., Georget, V., Hikal, P. & Verlhac, M. H. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development 138, 2903–2908 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Li, H., Guo, F., Rubinstein, B. & Li, R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nature Cell Biol. 10, 1301–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Yi, K., Rubinstein, B., Unruh, J. R., Slaughter, B. D. & Li, R. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J. Cell Biol. (in the press). Uses trajectory analysis to show that meiosis I chromosome migration is biphasic and driven by pushing forces that are generated first from FMN2-mediated actin assembly at the spindle periphery and then by ARP2/3-orchestrated cytoplasmic streaming.

  68. Azoury, J. et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Cur. Biol. 18, 1514–1519 (2008).

    Article  CAS  Google Scholar 

  69. Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105, 1473–1478 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods 5, 605–607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell. Motil. Cytoskeleton 64, 822–832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gutzeit, H. O. & Koppa, R. Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J. Embryol. Exp. Morphol. 67, 101–111 (1982).

    Google Scholar 

  73. Wolke, U., Jezuit, E. A. & Priess, J. R. Actin-dependent cytoplasmic streaming in C. elegans oogenesis. Development 134, 2227–2236 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Kamiya, N. Physical and chemical basis of cytoplasmic streaming. Ann. Rev. Plant Physiol. 32, 205–236 (1981).

    Article  CAS  Google Scholar 

  75. Ajduk, A. et al. Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nature Commun. 2, 417 (2011). Reports oscillatory cytoplasmic flow that is regulated by Ca2+ and actomyosin in fertilized mouse eggs and presents the intriguing link between flow parameters and the developmental potential of the embryo.

    Article  CAS  Google Scholar 

  76. Deng, M. & Li, R. Sperm chromatin-induced ectopic polar body extrusion in mouse eggs after ICSI and delayed egg activation. PloS ONE 4, e7171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pinot, M. et al. Confinement induces actin flow in a meiotic cytoplasm. Proc. Natl Acad. Sci. USA 109, 11705–11710 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nothnagel, E. A. & Webb, W. W. Hydrodynamic models of viscous coupling between motile myosin and endoplasm in Characean algae. J. Cell Biol. 94, 444–454 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Kachar, B. & Reese, T. S. The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J. Cell Biol. 106, 1545–1552 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Swann, K. et al. Phospholipase C-ζ-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil. Steril. 97, 742–747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Theurkauf, W. E., Alberts, B. M., Jan, Y. N. & Jongens, T. A. A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180 (1993).

    CAS  PubMed  Google Scholar 

  82. Theurkauf, W. E., Smiley, S., Wong, M. L. & Alberts, B. M. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923–936 (1992).

    CAS  PubMed  Google Scholar 

  83. Palacios, I. M. & St Johnston, D. Kinesin light chain-independent function of the kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129, 5473–5485 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Serbus, L. R., Cha, B. J., Theurkauf, W. E. & Saxton, W. M. Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development 132, 3743–3752 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Ganguly, S., Williams, L. S., Palacios, I. M. & Goldstein, R. E. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture. Proc. Natl Acad. Sci. USA 109, 15109–15114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Cur. Biol. 13, 1159–1168 (2003).

    Article  CAS  Google Scholar 

  87. Lantz, V. A., Clemens, S. E. & Miller, K. G. The actin cytoskeleton is required for maintenance of posterior pole plasm components in the Drosophila embryo. Mech. Dev. 85, 111–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Nishida, H. Specification of developmental fates in ascidian embryos: molecular approach to maternal determinants and signaling molecules. Int. Rev. Cytol. 217, 227–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Sardet, C., Paix, A., Prodon, F., Dru, P. & Chenevert, J. From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev. Dyn. 236, 1716–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Zernicka-Goetz, M. & Huang, S. Stochasticity versus determinism in development: a false dichotomy? Nature Rev. Genet. 11, 743–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Hiiragi, T., Louvet-Vallee, S., Solter, D. & Maro, B. Embryology: does prepatterning occur in the mouse egg? Nature 442, E3–E4 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Van Blerkom, J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128, 269–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Poulton, J. et al. Transmission of mitochondrial DNA diseases and ways to prevent them. PLoS Genet. 6, e1001066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Van Blerkom, J. & Runner, M. N. Mitochondrial reorganization during resumption of arrested meiosis in the mouse oocyte. Am. J. Anat. 171, 335–355 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. Tokura, T., Noda, Y., Goto, Y. & Mori, T. Sequential observation of mitochondrial distribution in mouse oocytes and embryos. J. Assist Reprod. Genet. 10, 417–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Sun, Q. Y. et al. Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122, 155–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Van Blerkom, J., Davis, P., Mathwig, V. & Alexander, S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod. 17, 393–406 (2002).

    Article  PubMed  Google Scholar 

  98. Van Blerkom, J., Davis, P. & Alexander, S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum. Reprod. 15, 2621–2633 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Herr, J. C. et al. Distribution of RNA binding protein MOEP19 in the oocyte cortex and early embryo indicates pre-patterning related to blastomere polarity and trophectoderm specification. Dev. Biol. 314, 300–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Ohsugi, M., Zheng, P., Baibakov, B., Li, L. & Dean, J. Maternally derived FILIA–MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135, 259–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Li, L., Baibakov, B. & Dean, J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425 (2008). Presents the first biochemical and functional characterization of a protein complex in the oocyte cortex that directly links oogenesis to embryogenesis in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng, P. & Dean, J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc. Natl Acad. Sci. USA 106, 7473–7478 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yurttas, P. et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135, 2627–2636 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Tashiro, F. et al. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes Cells 15, 813–828 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Morency, E., Anguish, L. & Coonrod, S. Subcellular localization of cytoplasmic lattice-associated proteins is dependent upon fixation and processing procedures. PloS ONE 6, e17226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Flemr, M., Ma, J., Schultz, R. M. & Svoboda, P. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol. Reprod. 82, 1008–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported in part by a grant from the US National Institutes of Health (NIH) (grant P01 GM 066311) (to R.L.) and an ESHE fund (to D.F.A.). The authors apologize to the researchers whose work could not be cited owing to space limitations, especially those who have developed many transgenic lines that have revealed so much about mouse oocyte biology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Rong Li's homepage

David F. Albertini's homepage

Glossary

Polar body

The daughter cell which is much smaller than the oocyte that results from each of the two meiotic cell divisions. The first polar body mostly degenerates within hours of formation, whereas the second polar body persists intact through the early cleavage stages of embryonic development.

Gap junctions

Intercellular channel structures formed by connexin proteins that connect neighbouring cells to allow passage of nutrients, ions and signalling molecules.

Adherens junctions

Protein complexes that contain cadherin and catenin proteins. They are formed between neighbouring cells in the tissue and serve not only to maintain cell–cell adhesion but also to regulate intracellular signalling and cytoskeletal organization.

Maternal effect

Refers to when the phenotype of an organism reflects the genotype of the mother (rather than its own genotype). This is often due to the mother supplying gene products (mRNA and/or proteins) to the embryo.

Germinal vesicle

The large nucleus of the primary oocyte before meiosis is completed.

Polyspermy

Referring to one egg being fertilized by multiple sperms.

Microtubule-organizing centres

(MTOCs). Major sites of microtubule nucleation and anchoring. MTOCs in mammalian meiotic spindles lack centrioles and are inherited by the embryos until embryos are able to assemble centriole-containing centrosomes.

Bivalents

Paired homologous chromosomes in meiosis I.

Reductional chromosome segregation

During meiosis I, pairs of homologous chromosomes segregate to opposite sides of the cell division plane, resulting in daughter cells with half of the chromosome number of the immature oocyte or somatic cells.

Equational chromosome segregation

During meiosis II, sister chromatids separate and segregate to the two daughter cells, thus maintaining the same chromosome number as the post-meiosis I oocyte.

Centrosomes

Organelles that function as the main microtubule organizing centres (MTOCs) in animal cells. They comprise two orthogonally arranged centrioles surrounded by an amorphous protein mass termed the pericentriolar material (PCM). Centrosomes nucleate the mitotic spindle and regulate cell cycle progression.

Parthenogenetic embryos

Embryos obtained by asexual reproduction, whereby embryo growth and development occur without fertilization.

Partitioning defective 3

(PAR3). A member of the conserved family of PAR proteins, which polarize cells during animal development.

Actin-related protein 2/3

(ARP2/3). A highly conserved seven-subunit protein complex that contains two actin-related proteins, ARP2 and ARP3, and nucleates an actin filament at a 70° angle from the side of an existing actin filament.

Formin

Formins are an evolutionarily conserved family of actin nucleators. Their nucleation activity is accomplished by a dimer of the formin homology 2 (FH2) domain that then tracks along the elongating actin barbed end.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Albertini, D. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14, 141–152 (2013). https://doi.org/10.1038/nrm3531

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing