Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meiosis: cell-cycle controls shuffle and deal

An Erratum to this article was published on 01 October 2005

Key Points

  • Meiosis is a specialized type of cell division in which two rounds of chromosome segregation follow a single round of DNA replication. In diploid organisms, meiosis generates gametes with a haploid number of chromosomes. Both general cell-cycle regulators and meiosis-specific proteins bring about this modified cell division.

  • Although pre-meiotic S phase uses the same replicative machinery as pre-mitotic S phase, its completion takes longer, probably because interactions between homologous chromosomes (homologues) — such as meiotic recombination, pairing of homologues and the formation of the synaptonemal complex — are being initiated during S phase.

  • Meiosis I is a unique chromosome-segregation event in which homologues segregate away from each other. Meiotic recombination during G2 generates chiasmata, which are important in holding homologues together, in preparation for their segregation during meiosis I.

  • Sister-chromatid cohesion is lost in a stepwise manner during meiosis. In yeast, the loss of the cohesin Rec8 on chromosome arms during meiosis I allows homologues to segregate away from each other. Rec8 at the centromere is retained, however, and holds sister chromatids together until meiosis II. MEI-S332/Sgo1 has an important role in protecting Rec8 from loss at the centromere during meiosis I.

  • In meiosis I, sister chromatids uniquely attach to microtubules from the same pole (monopolar attachment), whereas, in meiosis II, kinetochores attach to microtubules from opposite poles (bipolar attachment). In budding yeast, a complex known as monopolin was identified, which ensures the monopolar attachment of kinetochores during meiosis I.

  • The existence of two consecutive chromosome-segregation events during meiosis, without an intervening S phase, requires specialization of cell-cycle controls to execute the meiosis-I–meiosis-II transition. In some organisms this is achieved by a partial reduction in cyclin-dependent-kinase activity.

Abstract

Meiosis is the type of cell division that gives rise to eggs and sperm. Errors in the execution of this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Here, we review recent findings on how cell-cycle controls ensure the coordination of meiotic events, with a particular focus on the segregation of chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mitotic and meiotic cell cycles.
Figure 2: Cyclin-dependent-kinase activity in meiosis and mitosis.
Figure 3: The early crossover decision (ECD) model for meiotic recombination.
Figure 4: A model for meiotic chromosome segregation.
Figure 5: A model for the control of pericentromeric and centromeric cohesion in fission yeast.
Figure 6: Kinetochore orientation in mitosis and meiosis.

Similar content being viewed by others

References

  1. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  PubMed  Google Scholar 

  2. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11457–11462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004).

    CAS  PubMed  Google Scholar 

  4. Yamamoto, M. Regulation of meiosis in fission yeast. Cell Struct. Funct. 21, 431–436 (1996).

    CAS  PubMed  Google Scholar 

  5. Honigberg, S. M. & Purnapatre, K. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J. Cell Sci. 116, 2137–2147 (2003).

    CAS  PubMed  Google Scholar 

  6. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    CAS  PubMed  Google Scholar 

  7. Primig, M. et al. The core meiotic transcriptome in budding yeasts. Nature Genet. 26, 415–423 (2000).

    CAS  PubMed  Google Scholar 

  8. Dirick, L., Goetsch, L., Ammerer, G. & Byers, B. Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281, 1854–1857 (1998). Shows that Ime2 has a central role in promoting entry into pre-meiotic S phase. Ime2 mediates the destruction of the S-phase inhibitor, Sic1, and the activation of S-phase CDKs.

    CAS  PubMed  Google Scholar 

  9. Bolte, M., Steigemann, P., Braus, G. H. & Irniger, S. Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proc. Natl Acad. Sci. USA 99, 4385–4390 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Watanabe, Y., Shinozaki-Yabana, S., Chikashige, Y., Hiraoka, Y. & Yamamoto, M. Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386, 187–190 (1997).

    CAS  PubMed  Google Scholar 

  11. Kitamura, K. et al. Phosphorylation of Mei2 and Ste11 by Pat1 kinase inhibits sexual differentiation via ubiquitin proteolysis and 14-3-3 protein in fission yeast. Dev. Cell 1, 389–399 (2001).

    CAS  PubMed  Google Scholar 

  12. Li, P. & McLeod, M. Molecular mimicry in development: identification of ste11+ as a substrate and mei3+ as a pseudosubstrate inhibitor of ran1+ kinase. Cell 87, 869–880 (1996).

    CAS  PubMed  Google Scholar 

  13. Yamamoto, M., Imai, Y. & Watanabe, Y. in The Molecular and Cellular Biology of the Yeast Saccharomyces (eds Pringle, J. R., Broach, J. R. & Jones, E. W.) 1037–1106 (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  14. Watanabe, Y. & Yamamoto, M. S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78, 487–498 (1994).

    CAS  PubMed  Google Scholar 

  15. Stuart, D. & Wittenberg, C. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12, 2698–2710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Benjamin, K. R., Zhang, C., Shokat, K. M. & Herskowitz, I. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev. 17, 1524–1539 (2003). The authors show that the CDK Cdc28 is required for pre-meiotic S phase. They also find that Ime2 is required for the meiotic divisions, in addition to controlling entry into pre-meiotic S phase.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Newlon, C. S. Yeast chromosome replication and segregation. Microbiol. Rev. 52, 568–601 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins, I. & Newlon, C. S. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol. Cell. Biol. 14, 3524–3534 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Simchen, G. Are mitotic functions required in meiosis? Genetics 76, 745–753 (1973).

    Google Scholar 

  20. Ofir, Y., Sagee, S., Guttmann-Raviv, N., Pnueli, L. & Kassir, Y. The role and regulation of the preRC component Cdc6 in the initiation of premeiotic DNA replication. Mol. Biol. Cell 15, 2230–2242 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cha, R. S., Weiner, B. M., Keeney, S., Dekker, J. & Kleckner, N. Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev. 14, 493–503 (2000). Pre-meiotic DNA replication takes longer than pre-mitotic DNA replication in all organisms tested. Evidence that preparation for recombination is one factor that affects the length of pre-meiotic S phase was obtained through the observation that the absence of Rec8 or Spo11 alters the length of S phase.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis, L. et al. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks. Genetics 157, 1179–1189 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Borde, V., Goldman, A. S. & Lichten, M. Direct coupling between meiotic DNA replication and recombination initiation. Science 290, 806–809 (2000). When replication is delayed on a specific proportion of the chromosome, DSB formation at the same location is delayed by a similar amount, which shows that DNA replication and the appearance of DSBs are directly coupled.

    CAS  PubMed  Google Scholar 

  24. Smith, K. N., Penkner, A., Ohta, K., Klein, F. & Nicolas, A. B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis. Curr. Biol. 11, 88–97 (2001).

    CAS  PubMed  Google Scholar 

  25. Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).

    CAS  PubMed  Google Scholar 

  26. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    CAS  PubMed  Google Scholar 

  27. Cervantes, M. D., Farah, J. A. & Smith, G. R. Meiotic DNA breaks associated with recombination in S. pombe. Mol. Cell 5, 883–888 (2000).

    CAS  PubMed  Google Scholar 

  28. Murakami, H. & Nurse, P. Regulation of premeiotic S phase and recombination-related double-strand DNA breaks during meiosis in fission yeast. Nature Genet. 28, 290–293 (2001).

    CAS  PubMed  Google Scholar 

  29. Molnar, M., Bahler, J., Sipiczki, M. & Kohli, J. The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999). Smc3 and the meiosis-specific Scc1(Mcd1)/Rad21 homologue Rec8 are required for cohesion between sister chromatids in budding yeast. Rec8 is lost from chromosome arms during meiosis I and from centromeric regions during meiosis II.

    CAS  PubMed  Google Scholar 

  31. Watanabe, Y., Yokobayashi, S., Yamamoto, M. & Nurse, P. Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409, 359–363 (2001).

    CAS  PubMed  Google Scholar 

  32. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    CAS  PubMed  Google Scholar 

  33. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    CAS  PubMed  Google Scholar 

  35. Bishop, D. K. & Zickler, D. Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15 (2004).

    CAS  PubMed  Google Scholar 

  36. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001). Previous models of recombination proposed that COs and NCOs are generated by differential resolution of DHJs. This paper shows that NCO heteroduplex products are formed at the same time as DHJs. These results indicate that COs are formed by the resolution of DHJs, whereas NCOs are generated by a different pathway.

    CAS  PubMed  Google Scholar 

  37. Borner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    PubMed  Google Scholar 

  38. Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

    CAS  PubMed  Google Scholar 

  39. Fung, J. C., Rockmill, B., Odell, M. & Roeder, G. S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).

    CAS  PubMed  Google Scholar 

  40. Roeder, G. S. & Bailis, J. M. The pachytene checkpoint. Trends Genet. 16, 395–403 (2000).

    CAS  PubMed  Google Scholar 

  41. Murakami, H. & Nurse, P. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts. Biochem. J. 349, 1–12 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshida, K. et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol. Cell 1, 707–718 (1998).

    CAS  PubMed  Google Scholar 

  43. Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697–705 (1998).

    CAS  PubMed  Google Scholar 

  44. Leu, J. Y. & Roeder, G. S. The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28. Mol. Cell 4, 805–814 (1999).

    CAS  PubMed  Google Scholar 

  45. Pak, J. & Segall, J. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 6430–6440 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tung, K. S., Hong, E. J. & Roeder, G. S. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Natl Acad. Sci. USA 97, 12187–12192 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lindgren, A. et al. The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J. 19, 6489–6497 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kishimoto, T. Cell-cycle control during meiotic maturation. Curr. Opin. Cell Biol. 15, 654–663 (2003).

    CAS  PubMed  Google Scholar 

  49. Tunquist, B. J. & Maller, J. L. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev. 17, 683–710 (2003).

    CAS  PubMed  Google Scholar 

  50. Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    CAS  PubMed  Google Scholar 

  51. Steiner, W. W., Schreckhise, R. W. & Smith, G. R. Meiotic DNA breaks at the S. pombe recombination hot spot M26. Mol. Cell 9, 847–855 (2002).

    CAS  PubMed  Google Scholar 

  52. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    CAS  PubMed  Google Scholar 

  53. Romanienko, P. J. & Camerini-Otero, R. D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    CAS  PubMed  Google Scholar 

  54. Gruber, S., Haering, C. H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003). The authors carried out a series of experiments, the results of which are consistent with a model in which cohesin forms a ring around sister chromatids.

    CAS  PubMed  Google Scholar 

  55. Pasierbek, P. et al. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 15, 1349–1360 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999).

    CAS  PubMed  Google Scholar 

  57. Lee, J., Iwai, T., Yokota, T. & Yamashita, M. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J. Cell Sci. 116, 2781–2790 (2003).

    CAS  PubMed  Google Scholar 

  58. Eijpe, M., Offenberg, H., Jessberger, R., Revenkova, E. & Heyting, C. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3. J. Cell Biol. 160, 657–670 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kitajima, T. S., Yokobayashi, S., Yamamoto, M. & Watanabe, Y. Distinct cohesin complexes organize meiotic chromosome domains. Science 300, 1152–1155 (2003). In fission yeast, the Scc3 homologue Psc3 forms part of the cohesin complex. In meiosis, Psc3 is part of the cohesin complex at centromeric regions; however, a meiosis-specific variant, Rec11, substitutes for Psc3 on chromosome arms. Psc3 cohesin complexes at the pericentromere and inner centromere have different requirements for their assembly.

    CAS  PubMed  Google Scholar 

  60. DeVeaux, L. C. & Smith, G. R. Region-specific activators of meiotic recombination in Schizosaccharomyces pombe. Genes Dev. 8, 203–210 (1994).

    CAS  PubMed  Google Scholar 

  61. Krawchuk, M. D., DeVeaux, L. C. & Wahls, W. P. Meiotic chromosome dynamics dependent upon the rec8+, rec10+ and rec11+ genes of the fission yeast Schizosaccharomyces pombe. Genetics 153, 57–68 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 9, 515–525 (2002). In vertebrates, the bulk of cohesin is removed from chromosome arms during prophase and pro-metaphase in a mechanism that requires the Polo-like kinase.

    CAS  PubMed  Google Scholar 

  63. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002). Removal of cohesin from chromosome arms during prophase and pro-metaphase in the frog requires both Polo-like kinase and Aurora B.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Buonomo, S. B. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000). Cleavage of Rec8 by separase is required for the resolution of chiasmata and the disjunction of homologues to opposite poles in budding yeast.

    CAS  PubMed  Google Scholar 

  65. Kitajima, T. S., Miyazaki, Y., Yamamoto, M. & Watanabe, Y. Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J. 22, 5643–5653 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Davis, E. S. et al. Multiple subunits of the Caenorhabditis elegans anaphase-promoting complex are required for chromosome segregation during meiosis I. Genetics 160, 805–813 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Siomos, M. F. et al. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr. Biol. 11, 1825–1835 (2001).

    CAS  PubMed  Google Scholar 

  68. Terret, M. E. et al. The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr. Biol. 13, 1797–1802 (2003).

    CAS  PubMed  Google Scholar 

  69. Herbert, M. et al. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nature Cell Biol. 5, 1023–1025 (2003). References 67–69 show that the requirement for separase in the disjunction of homologues at meiosis I is conserved.

    CAS  PubMed  Google Scholar 

  70. Peter, M. et al. The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nature Cell Biol. 3, 83–87 (2001).

    CAS  PubMed  Google Scholar 

  71. Taieb, F. E., Gross, S. D., Lewellyn, A. L. & Maller, J. L. Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from meiosis I to II in Xenopus oocytes. Curr. Biol. 11, 508–513 (2001). References 70 and 71 show that the APC is not required for meiosis I in the frog.

    CAS  PubMed  Google Scholar 

  72. Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168 (2000). Reports the identification of the budding yeast protein Mam1 — the first protein known to mediate monopolar attachment of kinetochores during meiosis I.

    CAS  PubMed  Google Scholar 

  73. Yokobayashi, S., Yamamoto, M. & Watanabe, Y. Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. Mol. Cell. Biol. 23, 3965–3973 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M. A. & Nasmyth, K. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459–472 (2001).

    CAS  PubMed  Google Scholar 

  75. Clyne, R. K. et al. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nature Cell Biol. 5, 480–485 (2003).

    CAS  PubMed  Google Scholar 

  76. Lee, B. H. & Amon, A. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300, 482–486 (2003). References 75 and 76 show that the Polo-like kinase Cdc5 has several roles in meiosis-I chromosome segregation.

    CAS  PubMed  Google Scholar 

  77. Grether, M. E. & Herskowitz, I. Genetic and biochemical characterization of the yeast spo12 protein. Mol. Biol. Cell 10, 3689–3703 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, B. H., Amon, A. & Prinz, S. Spo13 regulates cohesin cleavage. Genes Dev. 16, 1672–1681 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shonn, M. A., McCarroll, R. & Murray, A. W. Spo13 protects meiotic cohesin at centromeres in meiosis I. Genes Dev. 16, 1659–1671 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kerrebrock, A. W., Moore, D. P., Wu, J. S. & Orr-Weaver, T. L. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83, 247–256 (1995). MEI-S332 localizes to centromeric regions from during meiosis until centromeric cohesion is lost at anaphase II.

    CAS  PubMed  Google Scholar 

  81. Moore, D. P., Page, A. W., Tang, T. T., Kerrebrock, A. W. & Orr-Weaver, T. L. The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J. Cell Biol. 140, 1003–1012 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kerrebrock, A. W., Miyazaki, W. Y., Birnby, D. & Orr-Weaver, T. L. The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130, 827–841 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Katis, V. L., Galova, M., Rabitsch, K. P., Gregan, J. & Nasmyth, K. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr. Biol. 14, 560–572 (2004).

    CAS  PubMed  Google Scholar 

  84. Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004).

    CAS  PubMed  Google Scholar 

  85. Marston, A. L., Tham, W. H., Shah, H. & Amon, A. A genome-wide screen identifies genes required for centromeric cohesion. Science. 303, 1367–1370 (2004).

    CAS  PubMed  Google Scholar 

  86. Rabitsch, K. P. et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14, 287–301 (2004). References 83–86 describe the identification of homologues of Mei-S332, known as shugoshins. Fission and budding yeast Sgo1 are required to retain Rec8 at centromeres until meiosis II.

    CAS  PubMed  Google Scholar 

  87. LeBlanc, H. N., Tang, T. T., Wu, J. S. & Orr-Weaver, T. L. The mitotic centromeric protein MEI-S332 and its role in sister-chromatid cohesion. Chromosoma 108, 401–411 (1999).

    CAS  PubMed  Google Scholar 

  88. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).

    CAS  PubMed  Google Scholar 

  89. Megee, P. C., Mistrot, C., Guacci, V. & Koshland, D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4, 445–450 (1999).

    CAS  PubMed  Google Scholar 

  90. Tanaka, T., Cosma, M. P., Wirth, K. & Nasmyth, K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98, 847–858 (1999).

    CAS  PubMed  Google Scholar 

  91. Bernard, P., Maure, J. F. & Javerzat, J. P. Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nature Cell Biol. 3, 522–526 (2001).

    CAS  PubMed  Google Scholar 

  92. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002).

    CAS  PubMed  Google Scholar 

  93. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    CAS  PubMed  Google Scholar 

  94. Lopez, J. M., Karpen, G. H. & Orr-Weaver, T. L. Sister-chromatid cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere. Curr. Biol. 10, 997–1000 (2000).

    CAS  PubMed  Google Scholar 

  95. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001).

    CAS  PubMed  Google Scholar 

  96. Weber, S. A. et al. The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol. 2, E260 (2004).

    PubMed  PubMed Central  Google Scholar 

  97. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    CAS  PubMed  Google Scholar 

  98. Goldstein, L. S. Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25, 591–602 (1981).

    CAS  PubMed  Google Scholar 

  99. Suja, J. A., de la Torre, J., Gimenez-Abian, J. F., Garcia de la Vega, C. & Rufas, J. S. Meiotic chromosome structure. Kinetochores and chromatid cores in standard and B chromosomes of Arcyptera fusca (Orthoptera) revealed by silver staining. Genome 34, 19–27 (1991).

    CAS  PubMed  Google Scholar 

  100. Paliulis, L. V. & Nicklas, R. B. The reduction of chromosome number in meiosis is determined by properties built into the chromosomes. J. Cell Biol. 150, 1223–1232 (2000). Meiotic chromosome behaviour was shown to be a chromosome intrinsic property in grasshopper spermatocytes. Transplantion of a meiosis-I chromosome to a meiosis-II spindle causes the chromosome to attach in a monopolar manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Davis, L. & Smith, G. R. Nonrandom homolog segregation at meiosis I in Schizosaccharomyces pombe mutants lacking recombination. Genetics 163, 857–874 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamamoto, A. & Hiraoka, Y. Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J. 22, 2284–2296 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Rabitsch, K. P. et al. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev. Cell 4, 535–548 (2003).

    CAS  PubMed  Google Scholar 

  104. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995).

    CAS  PubMed  Google Scholar 

  105. Ding, R., McDonald, K. L. & McIntosh, J. R. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120, 141–151 (1993).

    CAS  PubMed  Google Scholar 

  106. Gardner, R. D. & Burke, D. J. The spindle checkpoint: two transitions, two pathways. Trends Cell Biol. 10, 154–158 (2000).

    CAS  PubMed  Google Scholar 

  107. Shonn, M. A., McCarroll, R. & Murray, A. W. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300–303 (2000).

    CAS  PubMed  Google Scholar 

  108. Shonn, M. A., Murray, A. L. & Murray, A. W. Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes. Curr. Biol. 13, 1979–1984 (2003).

    CAS  PubMed  Google Scholar 

  109. Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–97 (2004).

    CAS  PubMed  Google Scholar 

  110. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).

    CAS  PubMed  Google Scholar 

  112. Klapholz, S., Waddell, C. S. & Esposito, R. E. The role of the SPO11 gene in meiotic recombination in yeast. Genetics 110, 187–216 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Furuno, N. et al. Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J. 13, 2399–2410 (1994). Mos and the retention of a modest level of CDK activity between meiosis I and meiosis II is required to prevent DNA replication between the meiotic divisions.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Iwabuchi, M., Ohsumi, K., Yamamoto, T. M., Sawada, W. & Kishimoto, T. Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts. EMBO J. 19, 4513–4523 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Huchon, D., Rime, H., Jessus, C. & Ozon, R. Control of metaphase I formation in Xenopus oocyte: effects of an indestructible cyclin B and of protein synthesis. Biol. Cell 77, 133–141 (1993).

    CAS  PubMed  Google Scholar 

  116. Ledan, E., Polanski, Z., Terret, M. E. & Maro, B. Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev. Biol. 232, 400–413 (2001).

    CAS  PubMed  Google Scholar 

  117. Buonomo, S. B. et al. Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends on separase, SPO12, and SLK19. Dev. Cell 4, 727–739 (2003).

    CAS  PubMed  Google Scholar 

  118. Marston, A. L., Lee, B. H. & Amon, A. The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosome segregation. Dev. Cell. 4, 711–726 (2003). References 117 and 118 show that downregulation of CDK activity by the FEAR network and Cdc14 is required for exit from meiosis I and for coupling of the meiotic chromosome-segregation cycle with development.

    CAS  PubMed  Google Scholar 

  119. Hochegger, H. et al. New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development 128, 3795–3807 (2001).

    CAS  PubMed  Google Scholar 

  120. Gross, S. D. et al. The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk. Curr. Biol. 10, 430–438 (2000).

    CAS  PubMed  Google Scholar 

  121. Gross, S. D., Schwab, M. S., Lewellyn, A. L. & Maller, J. L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286, 1365–1367 (1999). p90Rsk is the downstream component of the Mos–MAPK cascade.

    CAS  PubMed  Google Scholar 

  122. Perez, L. H., Antonio, C., Flament, S., Vernos, I. & Nebreda, A. R. Xkid chromokinesin is required for the meiosis I to meiosis II transition in Xenopus laevis oocytes. Nature Cell Biol. 4, 737–742 (2002).

    CAS  PubMed  Google Scholar 

  123. Nakajo, N. et al. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev. 14, 328–338 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Palmer, A., Gavin, A. C. & Nebreda, A. R. A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1. EMBO J. 17, 5037–5047 (1998). p90Rsk phosphorylates and inhibits Myt1, thereby maintaining cyclinB–Cdc2 in the active form.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shimoda, C., Hirata, A., Kishida, M., Hashida, T. & Tanaka, K. Characterization of meiosis-deficient mutants by electron microscopy and mapping of four essential genes in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 200, 252–257 (1985).

    CAS  PubMed  Google Scholar 

  126. Grandin, N. & Reed, S. I. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13, 2113–2125 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dahmann, C., Diffley, J. F. & Nasmyth, K. A. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5, 1257–1269 (1995).

    CAS  PubMed  Google Scholar 

  128. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    CAS  PubMed  Google Scholar 

  129. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    CAS  PubMed  Google Scholar 

  131. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Toth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1pCtf7, to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tomonaga, T. et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757–2770 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. van Heemst, D., James, F., Poggeler, S., Berteaux-Lecellier, V. & Zickler, D. Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs. Cell 98, 261–271 (1999).

    CAS  PubMed  Google Scholar 

  136. Hartman, T., Stead, K., Koshland, D. & Guacci, V. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151, 613–626 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Panizza, S., Tanaka, T., Hochwagen, A., Eisenhaber, F. & Nasmyth, K. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr. Biol. 10, 1557–1564 (2000).

    CAS  PubMed  Google Scholar 

  138. Tanaka, K., Hao, Z., Kai, M. & Okayama, H. Establishment and maintenance of sister chromatid cohesion in fission yeast by a unique mechanism. EMBO J. 20, 5779–5790 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, F., Yoder, J., Antoshechkin, I. & Han, M. Caenorhabditis elegans EVL-14/PDS-5 and SCC-3 are essential for sister chromatid cohesion in meiosis and mitosis. Mol. Cell. Biol. 23, 7698–7707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    CAS  PubMed  Google Scholar 

  141. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    CAS  PubMed  Google Scholar 

  142. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000). A separase-independent pathway removes cohesin from chromosome arms during prophase, whereas a separase-dependent pathway cleaves centromeric cohesin at the metaphase–anaphase transition.

    CAS  PubMed  Google Scholar 

  143. Cohen-Fix, O., Peters, J. M., Kirschner, M. W. & Koshland, D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093 (1996).

    CAS  PubMed  Google Scholar 

  144. Funabiki, H. et al. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature 381, 438–441 (1996).

    CAS  PubMed  Google Scholar 

  145. Ciosk, R. et al. An ESP1–PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    CAS  PubMed  Google Scholar 

  146. Lew, D. J. & Burke, D. J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251–282 (2003).

    CAS  PubMed  Google Scholar 

  147. Masui, Y. & Markert, C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145 (1971).

    CAS  PubMed  Google Scholar 

  148. Hashimoto, N. et al. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370, 68–71 (1994).

    CAS  PubMed  Google Scholar 

  149. Colledge, W. H., Carlton, M. B., Udy, G. B. & Evans, M. J. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370, 65–68 (1994).

    CAS  PubMed  Google Scholar 

  150. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342, 512–518 (1989).

    CAS  PubMed  Google Scholar 

  151. Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D. & Vande Woude, G. F. The product of the mos proto-oncogene as a candidate 'initiator' for oocyte maturation. Science 245, 643–646 (1989).

    CAS  PubMed  Google Scholar 

  152. Haccard, O. et al. Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 262, 1262–1265 (1993).

    CAS  PubMed  Google Scholar 

  153. Bhatt, R. R. & Ferrell, J. E., Jr. The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science 286, 1362–1365 (1999).

    CAS  PubMed  Google Scholar 

  154. Ivanovska, I., Lee, E., Kwan, K. M., Fenger, D. D. & Orr-Weaver, T. L. The Drosophila MOS ortholog is not essential for meiosis. Curr. Biol. 14, 75–80 (2004).

    CAS  PubMed  Google Scholar 

  155. Schwab, M. S. et al. Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation. Curr. Biol. 11, 141–150 (2001).

    CAS  PubMed  Google Scholar 

  156. Tunquist, B. J., Eyers, P. A., Chen, L. G., Lewellyn, A. L. & Maller, J. L. Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor-mediated metaphase arrest. J. Cell Biol. 163, 1231–1242 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Rempel, R. E., Sleight, S. B. & Maller, J. L. Maternal Xenopus Cdk2–cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J. Biol. Chem. 270, 6843–6855 (1995).

    CAS  PubMed  Google Scholar 

  158. D'Angiolella, V. et al. Role for cyclin-dependent kinase 2 in mitosis exit. Curr. Biol. 11, 1221–1226 (2001).

    CAS  PubMed  Google Scholar 

  159. Reimann, J. D. & Jackson, P. K. Emi1 is required for cytostatic factor arrest in vertebrate eggs. Nature 416, 850–854 (2002). The APCCdc20 inhibitor Emi1 is both necessary and sufficient for CSF arrest in frog oocytes.

    CAS  PubMed  Google Scholar 

  160. Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001).

    CAS  PubMed  Google Scholar 

  161. Kubota, H. Y., Yoshimoto, Y., Yoneda, M. & Hiramoto, Y. Free calcium wave upon activation in Xenopus eggs. Dev. Biol. 119, 129–136 (1987).

    CAS  PubMed  Google Scholar 

  162. Lorca, T. et al. Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature 366, 270–273 (1993).

    CAS  PubMed  Google Scholar 

  163. Koepp, D. M., Harper, J. W. & Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97, 431–434 (1999).

    CAS  PubMed  Google Scholar 

  164. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    CAS  PubMed  Google Scholar 

  165. Harper, J. W., Burton, J. L. & Solomon, M. J. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179–2206 (2002).

    CAS  PubMed  Google Scholar 

  166. Mito, Y., Sugimoto, A. & Yamamoto, M. Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Mol. Biol. Cell 14, 2399–2409 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chan, R. C. et al. Chromosome cohesion is regulated by a clock gene paralogue TIM-1. Nature 424, 1002–1009 (2003).

    Google Scholar 

  168. Warren, W. D. et al. The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr. Biol. 10, 1463–1466 (2000).

    CAS  PubMed  Google Scholar 

  169. Vass, S. et al. Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13, 208–218 (2003).

    CAS  PubMed  Google Scholar 

  170. Losada, A., Yokochi, T., Kobayashi, R. & Hirano, T. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J. Cell Biol. 150, 405–416 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Darwiche, N., Freeman, L. A. & Strunnikov, A. Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene 233, 39–47 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schmiesing, J. A. et al. Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics. Proc. Natl Acad. Sci. USA 95, 12906–12911 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Cai, X., Dong, F., Edelmann, R. E. & Makaroff, C. A. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J. Cell Sci. 116, 2999–3007 (2003).

    CAS  PubMed  Google Scholar 

  174. Prieto, I. et al. STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis. EMBO Rep. 3, 543–550 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Parisi, S. et al. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol. Cell. Biol. 19, 3515–3528 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Parra, M. T. et al. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J. Cell Sci. 117, 1221–1234 (2004).

    CAS  PubMed  Google Scholar 

  177. Xu, H. et al. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep. 5, 378–384 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Pasierbek, P. et al. The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Exp. Cell Res. 289, 245–255 (2003).

    CAS  PubMed  Google Scholar 

  179. Prieto, I. et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nature Cell Biol. 3, 761–766 (2001).

    CAS  PubMed  Google Scholar 

  180. Prieto, I. et al. Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res. 12, 197–213 (2004).

    CAS  PubMed  Google Scholar 

  181. Revenkova, E., Eijpe, M., Heyting, C., Gross, B. & Jessberger, R. Novel meiosis-specific isoform of mammalian smc1. Mol. Cell. Biol. 21, 6984–6998 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Orr-Weaver and members of the Amon laboratory for their critical reading of this manuscript. We apologize to our colleagues whose work was not discussed in this review due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Amon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Flybase

MEI-S332

Saccharomyces genome database

Cdc5

Cdc14

Cdc28

Chl4

CLB1

CLB3

CLB4

Clb5

Clb6

Csm1

Emi1

Esp1

IME1

IME2

Iml3

Ipl1

Mam1

MUM2

Ndt80

Pds5

Rec8

Scc1

Scc3

Sgo1

Sic1

Smc1

Smc3

Spo11

Spo13

Sum1

Swe1

S. pombe gene database

Bub1

Clr4

Cnp1

Mei2

Mei3

meiRNA

mes1 +

Pat1

Pcs1

Psc3

Rad21

Rec11

Rec12

Sgo2

Swi6

Glossary

HOMOLOGUE

One member of a chromosome pair (where each member of the pair is derived from one parent) in diploid organisms.

CYCLIN-DEPENDENT KINASE

(CDK). A protein kinase that requires an associated cyclin protein for activity. Various CDK–cyclin complexes regulate different stages of the cell cycle.

APC/C

(Anaphase-promoting complex/cyclosome). A ubiquitin ligase which, together with a ubiquitin-conjugating enzyme, attaches ubiquitin peptides to a substrate protein. Ubiquitylated proteins are recognized by the 26S proteasome and are subsequently degraded.

SYNAPTONEMAL COMPLEX

(SC). A proteinaceous structure that forms between two homologues during meiotic G2, which is defined by a state of low CDK activity (when chromosomes are condensed — cytologically speaking, this is prophase).

COHESIN

A protein complex that tethers sister chromatids together.

SISTER CHROMATIDS

Chromosomes that have been duplicated during S phase.

MITOTIC/MEIOTIC SPINDLE

A bipolar array of microtubules that forms during mitosis and meiosis to which chromosomes attach and by which chromosomes are segregated to daughter cells.

CHIASMA

(plural: chiasmata). Cytological manifestation of the point of exchange or crossing over between two homologues due to meiotic recombination.

COHESION

The sticking together of two sister chromatids.

SPINDLE POLE

The yeast equivalent of the centrosome that nucleates microtubules, including those that will form the spindle.

BIVALENT

A pair of homologues that are linked together following meiotic G2, which is defined by a state of low CDK activity (when chromosomes are condensed — cytologically speaking, this is prophase).

SEPARASE

An enzyme that cleaves the cohesin subunit Scc1 or Rec8 during mitosis and meiosis.

CENTROMERE

The region of the DNA on which the kinetochore assembles.

HOLOCENTRIC CHROMOSOME

A chromosome that has centromeres distributed along its length, which are known as diffuse centromeres.

MONOCENTRIC CHROMOSOME

A chromosome with a single centromere.

SECURIN

An inhibitor of separase that keeps the protease inactive until the onset of anaphase, at which point securin is destroyed, thereby liberating separase.

KINETOCHORE

A complex that is composed of a large number of proteins that mediate the attachment of chromosomes to microtubules.

AMPHITELIC

Connection of sister kinetochores to microtubules that emanate from opposite spindle pole bodies.

SYNTELIC

Connection of sister kinetochores to microtubules that emanate from the same spindle pole body.

MONOPOLIN COMPLEX

A protein complex that ensures the syntelic attachment of sister kinetochores during meiosis I.

MEROTELIC

Attachment of a single kinetochore to microtubules from both spindle-pole bodies.

CSF

(cytostatic factor). A cytoplasmic factor that is responsible for the arrest of oocytes at meiosis II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marston, A., Amon, A. Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5, 983–997 (2004). https://doi.org/10.1038/nrm1526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing