Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds

Key Points

  • Sirtuins are a critical component of evolutionarily conserved longevity pathways. Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases that promote longevity and healthy ageing.

  • Sirtuin-activating compounds (STACs) bind to and allosterically modulate the affinity of SIRT1 for NAD+ and protein substrates, resulting in increased activity.

  • Increasing NAD+ levels through various strategies can enhance the activity of all sirtuins and improve metabolic function and increase longevity.

  • Sirtuin overexpression and treatment with naturally occurring and synthetic STACs improves metabolic function and increases longevity in mice.

  • More than 50 clinical trials are currently evaluating the safety and physiological activity of naturally occurring and synthetic STACs for treating human disease.

Abstract

The sirtuins (SIRT1–7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nutrient-responsive signalling pathways that maintain health and extend lifespan.
Figure 2: Localization, enzymatic activity and modulation of sirtuins by small molecules.
Figure 3: The allosteric activation mechanism of SIRT1.
Figure 4: Sirtuin activation and its disease relevance.

Similar content being viewed by others

References

  1. Robine, J. M. et al. The joint action on healthy life years (JA: EHLEIS). Arch. Public Health 71, 2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155–171 (1989). A pioneering study reporting that reduced calorie intake and reduced body size leads to extended longevity.

    CAS  PubMed  Google Scholar 

  3. Anderson, R. M. & Weindruch, R. The caloric restriction paradigm: implications for healthy human aging. Am. J. Hum. Biol. 24, 101–106 (2012). An important review outlining what lessons have been learnt from calorie restriction studies and how they can be applied to human ageing.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sinclair, D. A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Mercken, E. M., Carboneau, B. A., Krzysik-Walker, S. M. & de Cabo, R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res. Rev. 11, 390–398 (2012).

    Article  PubMed  Google Scholar 

  10. Spindler, S. R. Caloric restriction: from soup to nuts. Ageing Res. Rev. 9, 324–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Phung, O. J., Sobieraj, D. M., Engel, S. S. & Rajpathak, S. N. Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes. Metab. 16, 410–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Check-Hayden, E. Anti-ageing pill pushed as bona fide drug. Nature 522, 265–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Friedman, D. B. & Johnson, T. E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. 43, B102–B109 (1988). Arguably the first evidence to indicate that genes may control longevity in worms.

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kennedy, B. K., Austriaco, N. R. Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496 (1995). The first study to show that sirtuins are involved in controlling yeast longevity.

    Article  CAS  PubMed  Google Scholar 

  16. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993). These findings provided undisputed evidence that a single gene mutation can robustly extend longevity in the worm C. elegans.

    Article  CAS  PubMed  Google Scholar 

  17. Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340–8351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9–22 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kennedy, B. K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997). The first study to show that replicative lifespan is mediated by the accumulation of ERCs.

    Article  CAS  PubMed  Google Scholar 

  22. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stumpferl, S. W. et al. Natural genetic variation in yeast longevity. Genome Res. 22, 1963–1973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). The first study to determine the mechanism for Sir2 was a NAD-dependent histone deacetylase.

    Article  CAS  PubMed  Google Scholar 

  25. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rizki, G. et al. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet. 7, e1002235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmeisser, K. et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat. Chem. Biol. 9, 693–700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moroz, N. et al. Dietary restriction involves NAD+-dependent mechanisms and a shift toward oxidative metabolism. Aging Cell 13, 1075–1085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Banerjee, K. K. et al. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2, 1485–1491 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Whitaker, R. et al. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging (Albany, NY) 5, 682–691 (2013).

    Article  CAS  Google Scholar 

  34. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sinclair, D. A., Mills, K. & Guarente, L. Molecular mechanisms of yeast aging. Trends Biochem. Sci. 23, 131–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toiber, D., Sebastian, C. & Mostoslavsky, R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Handb. Exp. Pharmacol. 206, 189–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010). A thorough review of the various biological mechanisms of sirtuin function in mammalian systems and physiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang, H. C. & Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 25, 138–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Nakagawa, T. & Guarente, L. SnapShot: sirtuins, NAD, and aging. Cell Metab. 20, 192 (2014). Lists the many sirtuin signalling protein targets.

    Article  CAS  PubMed  Google Scholar 

  42. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Vaziri, H. et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403–1417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Cohen, H. Y. et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell 13, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Pillai, J. B., Isbatan, A., Imai, S. & Gupta, M. P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2α deacetylase activity. J. Biol. Chem. 280, 43121–43130 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Vaitiekunaite, R. et al. Expression and localization of Werner syndrome protein is modulated by SIRT1 and PML. Mech. Ageing Dev. 128, 650–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Li, K. et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J. Biol. Chem. 283, 7590–7598 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell Proteomics 10, M111.012658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Feldman, J. L. et al. Kinetic and structural basis for acyl-group selectivity and NAD dependence in sirtuin-catalyzed deacylation. Biochemistry 54, 3037–3050 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Feldman, J. L., Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288, 31350–31356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanner, K. G., Landry, J., Sternglanz, R. & Denu, J. M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA 97, 14178–14182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M. & Sinclair, D. A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Landry, J., Slama, J. T. & Sternglanz, R. Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochem. Biophys. Res. Commun. 278, 685–690 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Kraus, D. et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong, S. et al. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat. Med. 21, 887–894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Y., Liang, Y. & Vanhoutte, P. M. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett. 585, 986–994 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Gerhart-Hines, Z. et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol. Cell 44, 851–863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Armour, S. M. et al. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging (Albany, NY) 1, 515–528 (2009). These findings provided an interesting link between mammalian sirtuins and mTOR signalling.

    Article  CAS  Google Scholar 

  65. Ghosh, H. S., McBurney, M. & Robbins, P. D. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5, e9199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, M. et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387–36394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Longo, V. D. Linking sirtuins, IGF-I signaling, and starvation. Exp. Gerontol. 44, 70–74 (2009). This paper provides a strong link between calorie restriction, IGF1 signalling and sirtuins.

    Article  CAS  PubMed  Google Scholar 

  69. Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Banks, A. S. et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333–341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschop, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kanfi, Y. et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9, 162–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Kugel, S. et al. SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell 165, 1401–1415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dai, H. et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 285, 32695–32703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hubbard, B. P. & Sinclair, D. A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van, M. M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    Article  CAS  Google Scholar 

  83. Xu, Z. et al. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle 14, 269–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sebastian, C. et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185–1199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Borra, M. T., Langer, M. R., Slama, J. T. & Denu, J. M. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43, 9877–9887 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038–17045 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, Y. et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol. Cell Proteomics 11, 1048–1062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lakshminarasimhan, M., Rauh, D., Schutkowski, M. & Steegborn, C. Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany, NY) 5, 151–154 (2013).

    Article  CAS  Google Scholar 

  89. Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219 (2013). A report of a sirtuin amino acid peptide screen that revealed the essential amino acid required for STAC binding to SIRT1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zorn, J. A. & Wells, J. A. Turning enzymes ON with small molecules. Nat. Chem. Biol. 6, 179–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Dai, H. et al. Crystallographic structure of a small molecule SIRT1 activator–enzyme complex. Nat. Commun. 6, 7645 (2015). The determination of the crystal structure for a truncated SIRT1 bound to the activator STAC-1.

    Article  PubMed  Google Scholar 

  92. Ghisays, F. et al. The N-terminal domain of SIRT1 is a positive regulator of endogenous SIRT1-dependent deacetylation and transcriptional outputs. Cell Rep. 10, 1665–1673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cuperus, G., Shafaatian, R. & Shore, D. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J. 19, 2641–2651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Howitz, K. T. & Sinclair, D. A. Xenohormesis: sensing the chemical cues of other species. Cell 133, 387–391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, S. J. et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gledhill, J. R., Montgomery, M. G., Leslie, A. G. & Walker, J. E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl Acad. Sci. USA 104, 13632–13637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zini, R., Morin, C., Bertelli, A., Bertelli, A. A. & Tillement, J. P. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp. Clin. Res. 25, 87–97 (1999).

    CAS  PubMed  Google Scholar 

  100. Sajish, M. & Schimmel, P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature 519, 370–373 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Neurobiology. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hou, X. et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015–20026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ivanov, V. N. et al. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp. Cell Res. 314, 1163–1176 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Lan, F., Cacicedo, J. M., Ruderman, N. & Ido, Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628–27635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tome-Carneiro, J. et al. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr. Pharm. Des. 19, 6064–6093 (2013). A meta-analysis of the effects of resveratrol in clinical trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walsh, G. P. Does diet or alcohol explain the French paradox. Lancet 345, 528 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Semba, R. D. et al. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern. Med. 174, 1077–1084 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jimenez-Gomez, Y. et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab. 18, 533–545 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Mattison, J. A. et al. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab. 20, 183–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fiori, J. L. et al. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62, 3500–3513 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. AlGhatrif, M. et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension 62, 934–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Bhatt, J. K., Thomas, S. & Nanjan, M. J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 32, 537–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Crandall, J. P. et al. Pilot study of resveratrol in older adults with impaired glucose tolerance. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1307–1312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wong, R. H. et al. Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr. Metab. Cardiovasc. Dis. 21, 851–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Magyar, K. et al. Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 50, 179–187 (2012).

    CAS  PubMed  Google Scholar 

  117. Poulsen, M. M. et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62, 1186–1195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Timmers, S. et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Turner, R. S. et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85, 1383–1391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim, D. et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hausenblas, H. A., Schoulda, J. A. & Smoliga, J. M. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus — systematic review and meta-analysis. Mol. Nutr. Food Res. 59, 147–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Cote, C. D. et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat. Med. 21, 498–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Minor, R. K. et al. SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 1, 70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mitchell, S. J. et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843 (2014). Describes the effects of feeding the STAC SRT1720 on healthspan and lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mercken, E. M. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13, 787–796 (2014). Long-term administration of STAC SRT2104 extends healthspan and longevity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Graff, J. et al. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J. Neurosci. 33, 8951–8960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Miranda, M. X. et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur. Heart J. 36, 51–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Hoffmann, E. et al. Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. Br. J. Clin. Pharmacol. 75, 186–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Libri, V. et al. A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS ONE 7, e51395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Venkatasubramanian, S. et al. Cardiovascular effects of a novel SIRT1 activator, SRT2104, in otherwise healthy cigarette smokers. J. Am. Heart Assoc. 2, e000042 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Krueger, J. G. et al. A randomized, placebo-controlled study of SRT2104, a SIRT1 activator, in patients with moderate to severe psoriasis. PLoS ONE 10, e0142081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Anderson, R. M. et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem. 277, 18881–18890 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Malavasi, F. et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 88, 841–886 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. PLoS ONE 6, e19194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ramsey, K. M., Mills, K. F., Satoh, A. & Imai, S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1α regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol. Aging 34, 1581–1588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Escande, C. et al. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62, 1084–1093 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Haffner, C. D. et al. Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J. Med. Chem. 58, 3548–3571 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Mouchiroud, L., Houtkooper, R. H. & Auwerx, J. NAD+ metabolism: a therapeutic target for age-related metabolic disease. Crit. Rev. Biochem. Mol. Biol. 48, 397–408 (2013). A thorough review outlining the potential mechanisms and roles of NAD in metabolism and disease.

    Article  CAS  PubMed  Google Scholar 

  145. Canto, C. et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15, 838–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 . EMBO Mol. Med. 6, 721–731 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tummala, K. S. et al. Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26, 826–839 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Scheibye-Knudsen, M. et al. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 20, 840–855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brown, K. D. et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 20, 1059–1068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 13, 533–545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, G. et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell 158, 1324–1334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yoon, M. J. et al. SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab. 21, 706–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jarolim, S. et al. A novel assay for replicative lifespan in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 169–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Morselli, E. et al. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging (Albany, NY) 1, 961–970 (2009).

    Article  CAS  Google Scholar 

  157. Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9, 605–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Zarse, K. et al. Differential effects of resveratrol and SRT1720 on lifespan of adult Caenorhabditis elegans. Horm. Metab. Res. 42, 837–839 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Bauer, J. H., Goupil, S., Garber, G. B. & Helfand, S. L. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 101, 12980–12985 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bauer, J. H. et al. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany, NY) 1, 38–48 (2009).

    Article  CAS  Google Scholar 

  162. Genade, T. & Lang, D. M. Resveratrol extends lifespan and preserves glia but not neurons of the Nothobranchius guentheri optic tectum. Exp. Gerontol. 48, 202–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, T. et al. Resveratrol attenuates oxidative stress and extends lifespan in the annual fish Nothobranchius guentheri. Rejuven. Res. 18, 225–233 (2015).

    Article  CAS  Google Scholar 

  164. Valenzano, D. R. & Cellerino, A. Resveratrol and the pharmacology of aging: a new vertebrate model to validate an old molecule. Cell Cycle 5, 1027–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Yu, X. & Li, G. Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp. Gerontol. 47, 940–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Rascon, B., Hubbard, B. P., Sinclair, D. A. & Amdam, G. V. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany, NY) 4, 499–508 (2012).

    Article  CAS  Google Scholar 

  167. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006). The first evidence to indicate that resveratrol could reverse many of the detriments of feeding a high-fat diet in mice and extend longevity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Barger, J. L., Kayo, T., Pugh, T. D., Prolla, T. A. & Weindruch, R. Short-term consumption of a resveratrol-containing nutraceutical mixture mimics gene expression of long-term caloric restriction in mouse heart. Exp. Gerontol. 43, 859–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Barger, J. L. et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3, e2264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Park, S. K. et al. Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 8, 484–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Nakata, A. et al. Potent SIRT1 enzyme-stimulating and anti-glycation activities of polymethoxyflavonoids from Kaempferia parviflora. Nat. Prod. Commun. 9, 1291–1294 (2014).

    CAS  PubMed  Google Scholar 

  173. Nayagam, V. M. et al. SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents. J. Biomol. Screen. 11, 959–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Lamming, D. W., Sabatini, D. M. & Baur, J. A. Pharmacologic means of extending lifespan. J. Clin. Exp. Pathol. (Suppl. 4), 7327 (2012).

  175. Boily, G., He, X. H., Pearce, B., Jardine, K. & McBurney, M. W. Sirt1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28, 2882–2893 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Garavaglia, S. et al. The high-resolution crystal structure of periplasmic Haemophilus influenzae NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism. Biochem. J. 441, 131–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Grozio, A. et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J. Biol. Chem. 288, 25938–25949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Carafa, V. et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin. Epigenetics 8, 61 (2016). An in-depth review discussing sirtuin inhibition as a potential therapeutic target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Lamming, D. W. et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861–1864 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tsuchiya, M. et al. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5, 505–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Mei, S. C. & Brenner, C. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous. PLoS Biol. 13, e1002048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Evans, C. et al. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chem. Biol. 10, 2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, Y. & Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 127, 48–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. van der Horst, A., Schavemaker, J. M., Pellis-van, B. W. & Burgering, B. M. The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival. Mech. Ageing Dev. 128, 346–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Viswanathan, M. & Guarente, L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477, E1–E2 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Gruber, J., Tang, S. Y. & Halliwell, B. Evidence for a trade-off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans. Ann. NY Acad. Sci. 1100, 530–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Bass, T. M., Weinkove, D., Houthoofd, K., Gems, D. & Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 128, 546–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Mair, W., Panowski, S. H., Shaw, R. J. & Dillin, A. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans. PLoS ONE 4, e4535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Astrom, S. U., Cline, T. W. & Rine, J. The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163, 931–937 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Newman, B. L., Lundblad, J. R., Chen, Y. & Smolik, S. M. A. Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162, 1675–1685 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Pallos, J. et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 17, 3767–3775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hoffmann, J., Romey, R., Fink, C., Yong, L. & Roeder, T. Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging (Albany, NY) 5, 315–327 (2013).

    Article  CAS  Google Scholar 

  197. Parashar, V. & Rogina, B. dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction. Aging (Albany, NY) 1, 529–541 (2009).

    Article  CAS  Google Scholar 

  198. McBurney, M. W. et al. The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 23, 38–54 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3, e1759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. Sirt1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. B. Schultz for suggestions and edits and are grateful for financial support from the National Institute on Aging, the National Institutes of Health, the Paul F. Glenn Foundation for Medical Research, Edward Schulak, and Ovaxon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sinclair.

Ethics declarations

Competing interests

D.A.S. is a consultant to and/or inventor on patents licensed to GlaxoSmithKline, Ovascience, MetroBiotech, Arc Bio, and Liberty BioSecurity. M.S.B. is a consultant for Ovascience.

PowerPoint slides

Supplementary information

Supplementary information S1 (box)

Relevance of nematode and fruit fly sirtuins to longevity (PDF 144 kb)

Related links

Related links

DATABASES

ClinicalTrials.gov

Glossary

Replicative ageing

In yeast, the number of daughter cells produced by a mother cell before senescence.

Redox reactions

Oxidation–reduction (redox) reactions involving the transfer of electrons between two chemical species.

Hepatic steatosis

Also known as fatty liver, is a term used to describe the accumulation of fat in the liver cells.

Allosteric activation

Activation of an enzyme by binding of a ligand, which enhances the binding of substrates at other binding sites.

K m

Michaelis constant, which reflects the affinity of an enzyme for its substrate. The Km is measured as the substrate concentration at which the reaction rate is half of its maximum rate.

K-type allosteric activation

Refers to the major type of allosteric activation, in which the main feature that is altered is the Michaelis constant (Km).

HOMA index

The homeostatic model assessment (HOMA) index is a clinical measure used to predict the function of pancreatic β-cells and insulin resistance.

Bioavailability

The degree and rate at which a substance is absorbed and is made available at the site of physiological activity.

EC50

The concentration of substrate that elicits a half-maximal enzymatic response.

Plaque-type psoriasis

The most common form of the disease, which is manifested as raised, red patches covered with a silvery white build-up of dead skin cells or scale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonkowski, M., Sinclair, D. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17, 679–690 (2016). https://doi.org/10.1038/nrm.2016.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing