Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional significance of the perforin/granzyme cell death pathway

Key Points

  • Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes to kill virus-infected and transformed cells. The main function of the FAS–FAS ligand (FASL) pathway is to maintain homeostasis of the lymphoid compartment.

  • Studies in gene-disrupted mice indicate that perforin is vital for cytotoxic effector function. Perforin-deficient mice are abnormally susceptible to many viruses and other intracellular pathogens, they fail to reject certain types of allograft and they are highly susceptible to spontaneous B-cell lymphomas as they age.

  • In certain situations, perforin deficiency is associated with reduced immunopathology. For example, non-obese diabetic (NOD) mice that lack perforin develop islet inflammation, but are protected from autoimmune destruction of their pancreatic β-cells and have a reduced incidence of diabetes compared with wild-type NOD mice.

  • The molecular functions of perforin are not well understood. Perforin has an indispensable role in delivering granzyme B and other granule toxins to the cytosol of target cells. However, the hypothesis that perforin pores allow the passive diffusion of granzymes into cells is not consistent with recent experimental data, and this model is probably an over-simplification.

  • Recently, a subset of patients with the rare immunodeficiency disease familial haemophagocytic lymphohistiocytosis (FHL) were found to have missense and/or nonsense mutations in both of their perforin alleles. The catalogue of deduced perforin mutations should enable researchers to define in more detail the basis of the normal molecular functions of perforin.

  • Granzymes trigger several apoptotic pathways in target cells; some of them are dependent on caspases, but others can kill cells when caspases are inhibited, for example by viral proteins that block intrinsic apoptotic pathways.

  • Deficiency of an individual granzyme might be associated with focal immune deficits — for example, the marked susceptibility of granzyme-A- or -B-deficient mice and, particularly, granzyme A and B double-deficient mice to the poxvirus ectromelia. The same animals do not have increased susceptibility to related poxviruses.

  • Perforin protects mice against the development of spontaneous B-cell lymphoma and carcinogen-induced sarcoma. It remains to be determined whether surveillance against other cancers, particularly epithelial malignancies, is affected in perforin-deficient mice.

  • In addition to determining whether a virus is cleared or persists, the effector pathway that is selected by killer lymphocytes (perforin/granzyme, FASL or interferon-γ) can influence immunopathology, often in an organ-specific manner.

  • Many mechanisms of immune escape that operate at the level of reduced antigen presentation have been described for virus-infected and malignant cells. It is now becoming increasingly clear that alternative mechanisms can operate at the level of inhibiting effector-cell function.

Abstract

Perforin/granzyme-induced apoptosis is the main pathway used by cytotoxic lymphocytes to eliminate virus-infected or transformed cells. Studies in gene-disrupted mice indicate that perforin is vital for cytotoxic effector function; it has an indispensable, but undefined, role in granzyme-mediated apoptosis. Despite its vital importance, the molecular and cellular functions of perforin and the basis of perforin and granzyme synergy remain poorly understood. The purpose of this review is to evaluate critically recent findings on cytotoxic granule-mediated cell death and to assess the functional significance of postulated cell-death pathways in appropriate pathophysiological contexts, including virus infection and susceptibility to experimental or spontaneous tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolving models of CTL/NK-cell-induced cell death.
Figure 2: Reliance of GVHD and GVT effects on different cytotoxic effector pathways.
Figure 3: Putative tumour immune-escape mechanisms operating at the level of CTL/NK-cell-mediated apoptosis.

Similar content being viewed by others

References

  1. Smyth, M. J. & Trapani, J. A. Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol. Today 16, 202–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Trapani, J. A. et al. Efficient nuclear targeting of granzyme B and the nuclear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J. Biol. Chem. 273, 27934–27938 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Sarin, A. et al. Target-cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6, 209–215 (1997).References 2 and 3 were the first to show that granzyme B (reference 2 ) and CTLs (reference 3 ) can kill target cells independently of caspase activation.

    Article  CAS  PubMed  Google Scholar 

  4. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Van Parijs, L. & Abbas, A. K. Role of Fas-mediated cell death in the regulation of immune responses. Curr. Opin. Immunol. 8, 355–361 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R. M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14, 207–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Page, L. J., Darmon, A. J., Uellner, R. & Griffiths, G. M. L is for lytic granules: lysosomes that kill. Biochim. Biophys. Acta 1401, 146–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Smyth, M. J. & Trapani, J. A. The relative role of lymphocyte granule exocytosis versus death-receptor-mediated cytotoxicity in viral pathophysiology. J. Virol. 72, 1–9 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Biron, C. A. & Brossay, L. NK cells and NKT cells in innate defense against viral infections. Curr. Opin. Immunol. 13, 458–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. & Baxter, A. G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Barry, M. & Bleackley, R. C. Cytotoxic T lymphocytes: all roads lead to death. Nature Rev. Immunol. 2, 401–409 (2002).

    Article  CAS  Google Scholar 

  14. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).A seminal paper showing the marked immunodeficiency of perforin-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  15. Mullbacher, A., Hla, R. T., Museteanu, C. & Simon, M. M. Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J. Virol. 73, 1665–1667 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebnet, K. et al. Granzyme-A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Pham, C. T., MacIvor, D. M., Hug, B. A., Heusel, J. W. & Ley, T. J. Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl Acad. Sci. USA 93, 13090–13095 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mullbacher, A. et al. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc. Natl Acad. Sci. USA 96, 13950–13955 (1999).This study establishes that both granzyme A and 'B-cluster' granzymes are indispensable effector molecules that function together with perforin in host defence against the natural viral pathogen ectromelia. It describes the most convincing phenotype for granzyme-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mullbacher, A. et al. Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc. Natl Acad. Sci. USA 93, 5783–5787 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riera, L. et al. Murine cytomegalovirus replication in salivary glands is controlled by both perforin and granzymes during acute infection. Eur. J. Immunol. 30, 1350–1355 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Mullbacher, A., Wallich, R., Moyer, R. W. & Simon, M. M. Poxvirus-encoded serpins do not prevent cytolytic T-cell-mediated recovery from primary infections. J. Immunol. 162, 7315–7321 (1999).

    CAS  PubMed  Google Scholar 

  23. Trapani, J. A., Sutton, V. R. & Smyth, M. J. CTL granules: evolution of vesicles essential for combating virus infections. Immunol. Today 20, 351–356 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. van den Brink, M. R. & Burakoff, S. J. Cytolytic pathways in haematopoietic stem-cell transplantation. Nature Rev. Immunol. 2, 273–281 (2002).

    Article  CAS  Google Scholar 

  25. Schmaltz, C. et al. Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 97, 2886–2895 (2001).Using mouse models of allogeneic bone-marrow transplantation, this study shows that donor T cells mediate GVHD primarily through the FasL effector pathway, and graft-versus-leukaemia activity through the perforin pathway. A specific block of the Fas–FasL pathway might be used to prevent GVHD without interfering with graft-versus-leukaemia activity.

    Article  CAS  PubMed  Google Scholar 

  26. Shresta, S., Graubert, T. A., Thomas, D. A., Raptis, S. Z. & Ley, T. J. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity 10, 595–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Davis, J. E., Smyth, M. J. & Trapani, J. A. Granzyme A- and B-deficient killer lymphocytes are defective in eliciting DNA fragmentation but retain potent in vivo anti-tumor capacity. Eur. J. Immunol. 31, 39–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Nakano, A. et al. Papillon-Lefevre syndrome: mutations and polymorphisms in the cathepsin C gene. J. Invest. Dermatol. 116, 339–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA 96, 8627–8632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Young, L. H. et al. Perforin-mediated myocardial damage in acute myocarditis. Lancet 336, 1019–1021 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Shi, L. et al. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med. 185, 855–866 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trapani, J. A., Browne, K. A., Smyth, M. J. & Jans, D. A. Localization of granzyme B in the nucleus. A putative role in the mechanism of cytotoxic lymphocyte-mediated apoptosis. J. Biol. Chem. 271, 4127–4133 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Pinkoski, M. J. et al. Entry and trafficking of granzyme B in target cells during granzyme-B–perforin-mediated apoptosis. Blood 92, 1044–1054 (1998).

    CAS  PubMed  Google Scholar 

  34. Froelich, C. J. et al. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem. 271, 29073–29079 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Shi, L., Kraut, R. P., Aebersold, R. & Greenberg, A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175, 553–566 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Browne, K. A. et al. Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol. 19, 8604–8615 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Podack, E. R. et al. Structure, function and expression of murine and human perforin 1 (P1). Immunol. Rev. 103, 203–211 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Metkar, S. S. et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme-B–serglycin complexes into target cells without plasma-membrane pore formation. Immunity 16, 417–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T-cell-induced apoptosis. Cell 103, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Griffiths, G. M. & Isaaz, S. Granzyme A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J. Cell. Biol. 120, 885–896 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Smyth, M. J. et al. Perforin is a major contributor to NK-cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    CAS  PubMed  Google Scholar 

  42. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).CTLs kill Mycobacterium tuberculosis in infected cells in a perforin-dependent manner that requires the action of the granule-bound and evolutionarily ancient toxin granulysin.

    Article  CAS  PubMed  Google Scholar 

  43. Spielman, J., Lee, R. K. & Podack, E. R. Perforin/Fas-ligand double deficiency is associated with macrophage expansion and severe pancreatitis. J. Immunol. 161, 7063–7070 (1998).

    CAS  PubMed  Google Scholar 

  44. Peng, S. L., Moslehi, J., Robert, M. E. & Craft, J. Perfori protects against autoimmunity in lupus-prone mice. J. Immunol. 160, 652–660 (1998).

    CAS  PubMed  Google Scholar 

  45. Spaner, D., Raju, K., Rabinovich, B. & Miller, R. G. A role for perforin in activation-induced T-cell death in vivo: increased expansion of allogeneic perforin-deficient T cells in SCID mice. J. Immunol. 162, 1192–1199 (1999).

    CAS  PubMed  Google Scholar 

  46. Kagi, D., Odermatt, B. & Mak, T. W. Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol. 29, 3262–3272 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).This study of perforin-gene-targeted mice provides compelling evidence to support tumour immunosurveillance by CTLs, and it was the first study to show direct cytotoxicity by lymphocytes in regulating lymphomagenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).The first description of perforin-mutant humans (10q21–22-linked familial haemophagocytic lymphohistiocytosis, FHL) confirms that perforin-based effector systems are involved not only in the apoptosis of abnormal cells, but also in the down-regulation of cellular immune activation.

    Article  CAS  PubMed  Google Scholar 

  49. Kodama, T. et al. Perforin-dependent NK-cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. Eur. J. Immunol. 29, 1390–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Screpanti, V., Wallin, R. P., Ljunggren, H. G. & Grandien, A. A central role for death-receptor-mediated apoptosis in the rejection of tumors by NK cells. J. Immunol. 167, 2068–2073 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Taylor, M. A. et al. Inhibition of the death-receptor pathway by cFLIP confers partial engraftment of MHC class-I-deficient stem cells and reduces tumor clearance in perforin-deficient mice. J. Immunol. 167, 4230–4237 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Takeda, K. et al. Involvement of tumor-necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med. 7, 94–100 (2001).This study provides the first evidence for the physiological function of TRAIL as a tumour suppressor and clearly defines perforin and TRAIL as the main killing mechanisms that are used by NK cells.

    Article  CAS  PubMed  Google Scholar 

  53. Smyth, M. J. et al. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon-γ-dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Elsas, A. et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194, 481–489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seki, N. et al. Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J. Immunol. 168, 3484–3492 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Peng, L. et al. T-cell-mediated tumor rejection displays diverse dependence upon perforin and IFN-γ mechanisms that cannot be predicted from in vitro T-cell characteristics. J. Immunol. 165, 7116–7124 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Dobrzanski, M. J., Reome, J. B. & Dutton, R. W. Role of effector-cell-derived IL-4, IL-5 and perforin in early and late stages of type-2 CD8 effector-cell-mediated tumor rejection. J. Immunol. 167, 424–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shankaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth and metastasis. Blood 97, 192–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Braun, M. Y., Lowin, B., French, L., Acha-Orbea, H. & Tschopp, J. Cytotoxi T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J. Exp. Med. 183, 657–661 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Tsukada, N., Kobata, T., Aizawa, Y., Yagita, H. & Okumura, K. Graft-versus-leukemia effect and graft-versus-host disease can be differentiated by cytotoxic mechanisms in a murine model of allogeneic bone-marrow transplantation. Blood 93, 2738–2747 (1999).

    CAS  PubMed  Google Scholar 

  65. Taylor, M. A., Ward, B., Schatzle, J. D. & Bennett, M. Perforin and Fas-dependent mechanisms of natural killer cell-mediated rejection of incompatible bone-marrow cell grafts. Eur. J. Immunol. 32, 793–799 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimi, A. et al. Epstein–Barr virus-specific T-cell cytotoxicity is mediated through the perforin pathway in patients with lymphoproliferative disorders after allogeneic bone-marrow transplantation. Br. J. Haematol. 116, 710–715 (2002).

    Article  PubMed  Google Scholar 

  67. Barchet, W. et al. Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8+ T cells in vivo. Eur. J. Immunol. 30, 1356–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Ludewig, B. et al. Perforin-independent regulation of dendritic-cell homeostasis by CD8+ T cells in vivo: implications for adaptive immunotherapy. Eur. J. Immunol. 31, 1772–1779 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Shustov, A. et al. Role of perforin in controlling B-cell hyperactivity and humoral autoimmunity. J. Clin. Invest. 106, R39–R47 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Binder, D. et al. Aplastic anemia rescued by exhaustion of cytokine-secreting CD8+ T cells in persistent infection with lymphocytic choriomeningitis virus. J. Exp. Med. 187, 1903–1920 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Harty, J. T. & Badovinac, V. P. Influence of effector molecules on the CD8+ T-cell response to infection. Curr. Opin. Immunol. 14, 360–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Goransdotter Ericson, K. et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am. J. Hum. Genet. 68, 590–597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kogawa, K. et al. Perforin expression in cytotoxic lymphocytes from patients with hemophagocytic lymphohistiocytosis and their family members. Blood 99, 61–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Amrani, A. et al. Perforin-independent β-cell destruction by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. J. Clin. Invest. 103, 1201–1209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kagi, D. et al. Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J. Exp. Med. 186, 989–997 (1997).A milestone study in the NOD mouse model, which clearly shows for the first time that perforin-dependent cytotoxicity is a crucial effector mechanism for β-cell elimination by CTLs in autoimmune diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Herrera, P. L., Harlan, D. M. & Vassalli, P. A mouse CD8 T-cell-mediated acute autoimmune diabetes independent of the perforin and Fas cytotoxic pathways: possible role of membrane TNF. Proc. Natl Acad. Sci. USA 97, 279–284 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kreuwel, H. T. et al. Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T-cell-mediated insulin-dependent diabetes mellitus. J. Immunol. 163, 4335–4341 (1999).

    CAS  PubMed  Google Scholar 

  79. Allison, J. et al. Transgenic overexpression of human Bcl-2 in islet β-cells inhibits apoptosis but does not prevent autoimmune destruction. Int. Immunol. 12, 9–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Sutton, V. R., Vaux, D. L. & Trapani, J. A. Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. J. Immunol. 158, 5783–5790 (1997).

    CAS  PubMed  Google Scholar 

  81. Malipiero, U. et al. Myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis is chronic/relapsing in perforin-knockout mice, but monophasic in Fas- and Fas-ligand-deficient lpr and gld mice. Eur. J. Immunol. 27, 3151–3160 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M. & Tabira, T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 186, 1677–1687 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kagi, D. et al. The roles of perforin- and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur. J. Immunol. 25, 3256–3262 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Pardo, J. et al. A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis. J. Immunol. 167, 1222–1229 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Kaspar, A. A. et al. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J. Immunol. 167, 350–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, P., Freidag, B. L., Caldwell, C. C. & Seder, R. A. Perforin is required for primary immunity to Histoplasma capsulatum. J. Immunol. 166, 1968–1974 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Nickell, S. P. & Sharma, D. Trypanosoma cruzi: roles for perforin-dependent and perforin-independent immune mechanisms in acute resistance. Exp. Parasitol. 94, 207–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Wu-Hsieh, B. A. et al. Distinct CD8 T-cell functions mediate susceptibility to histoplasmosis during chronic viral infection. J. Immunol. 167, 4566–4573 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Nansen, A. et al. Compromised virus control and augmented perforin-mediated immunopathology in IFN-γ-deficient mice infected with lymphocytic choriomeningitis virus. J. Immunol. 163, 6114–6122 (1999).

    CAS  PubMed  Google Scholar 

  90. Balkow, S. et al. Concerted action of the FasL/Fas and perforin/granzyme A and B pathways is mandatory for the development of early viral hepatitis but not for recovery from viral infection. J. Virol. 75, 8781–8791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Palma, J. P. et al. Enhanced susceptibility to Theiler's virus-induced demyelinating disease in perforin-deficient mice. J. Neuroimmunol. 116, 125–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Chang, E., Galle, L., Maggs, D., Estes, D. M. & Mitchell, W. J. Pathogenesis of herpes simplex virus type-1-induced corneal inflammation in perforin-deficient mice. J. Virol. 74, 11832–11840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Licon Luna, R. M. et al. Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J. Virol. 76, 3202–3211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T-cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000).This key study of immunoregulation in mice that are deficient in perforin and/or IFN-γ shows that the expansion of antigen-specific CD8+ T-cell populations in response to bacterial infection is controlled by perforin, whereas immunodominance and T-cell death is regulated by IFN-γ.

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, S., Ou, R., Huang, L. & Moskophidis, D. Critica role for perforin-, Fas/FasL- and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J. Virol. 76, 829–840 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kedl, R. M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kedl, R. M., Schaefer, B. C., Kappler, J. W. & Marrack, P. T cells down-modulate peptide–MHC complexes on APCs in vivo. Nature Immunol. 3, 27–32 (2002).

    Article  CAS  Google Scholar 

  98. Chambers, B. J., Salcedo, M. & Ljunggren, H. G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Appay, V. et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192, 63–75 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kafrouni, M. I., Brown, G. R. & Thiele, D. L. Virally infected hepatocytes are resistant to perforin-dependent CTL effector mechanisms. J. Immunol. 167, 1566–1574 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Tay, C. H. & Welsh, R. M. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J. Virol. 71, 267–275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Aung, S. & Graham, B. S. IL-4 diminishes perforin-mediated and increases Fas-ligand-mediated cytotoxicity in vivo. J. Immunol. 164, 3487–3493 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Kienzle, N., Buttigieg, K., Groves, P., Kawula, T. & Kelso, A. A clonal culture system demonstrates that IL-4 induces a subpopulation of noncytolytic T cells with low CD8, perforin and granzyme expression. J. Immunol. 168, 1672–1681 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Strand, S. & Galle, P. R. Immune evasion by tumours: involvement of the CD95 (APO-1/Fas) system and its clinical implications. Mol. Med. Today 4, 63–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Restifo, N. P. Not so Fas: re-evaluating the mechanisms of immune privilege and tumor escape. Nature Med. 6, 493–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Andrade, F. et al. Adenovirus L4-100K assembly protein is a granzyme-B substrate that potently inhibits granzyme-B-mediated cell death. Immunity 14, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Jerome, K. R. et al. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. J. Immunol. 167, 3928–3935 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Bird, P. I. Regulation of pro-apoptotic leucocyte granule serine proteinases by intracellular serpins. Immunol. Cell. Biol. 77, 47–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Medema, J. P. et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl Acad. Sci. USA 98, 11515–11520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Medema, J. P. et al. Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T-lymphocyte-induced apoptosis: differential modulation by T-helper type 1 and type 2 cells. J. Exp. Med. 194, 657–667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Radoja, S. et al. CD8+ tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic-granule exocytosis. J. Immunol. 167, 5042–5051 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Djeu, J. Y., Jiang, K. & Wei, S. A view to a kill: signals triggering cytotoxicity. Clin. Cancer Res. 8, 636–640 (2002).

    CAS  PubMed  Google Scholar 

  113. Jiang, K. et al. Pivotal role of phosphoinositide 3-kinase in regulation of cytotoxicity in natural killer cells. Nature Immunol. 1, 419–425 (2000).

    Article  CAS  Google Scholar 

  114. Fuller, C. L., Ravichandran, K. S. & Braciale, V. L. Phosphatidylinositol 3-kinase-dependent and -independent cytolytic effector functions. J. Immunol. 162, 6337–6340 (1999).

    CAS  PubMed  Google Scholar 

  115. Haddad, E. K., Wu, X., Hammer, J. A. 3rd & Henkart, P. A. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell. Biol. 152, 835–842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi, L., Kam, C. M., Powers, J. C., Aebersold, R. & Greenberg, A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target-cell interactions. J. Exp. Med. 176, 1521–1529 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme-B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).This study showed that granzyme-B-mediated activation of caspases is indirect in intact cells and is mediated through direct cleavage of BID and subsequent mitochondrial disruption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Alimonti, J. B., Shi, L., Baijal, P. K. & Greenberg, A. H. Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J. Biol. Chem. 276, 6974–6982 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Heibein, J. A. et al. Granzyme-B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J. Exp. Med. 192, 1391–1402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thomas, D. A., Scorrano, L., Putcha, G. V., Korsmeyer, S. J. & Ley, T. J. Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX an. BAK. Proc. Natl Acad. Sci. USA 98, 14985–14990 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bladergroen, B. A. et al. Expression of the granzyme-B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system? Blood 99, 232–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Beresford, P. J., Xia, Z., Greenberg, A. H. & Lieberman, J. Granzym A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10, 585–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Balaji, K. et al. Surface cathepsin B protects cytotoxic T lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Watanabe, T. et al. A molecular genetic linkage map of mouse chromosome 19, including the lpr, Ly-44 and Tdt genes. Biochem. Genet. 29, 325–335 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Walsh, C. M. et al. Immune function in mice lacking the perforin gene. Proc. Natl Acad. Sci. USA 91, 10854–10858 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all of the present and past staff and students of the Cancer Immunology Laboratory at the Peter MacCallum Cancer Institute and the Austin Research Institute (pre-2000), particularly K. Browne, E. Cretney, V. Sutton, S. Street, J. Kelly and K. Thia. Our studies described and cited in this review have been supported by funding from the National Health and Medical Research Council (NHMRC), Australia, The Anti-Cancer Council, Victoria, and the Wellcome Trust, UK, between 1990 and the present. Both J.A.T. and M.J.S. are past recipients of Wellcome Trust Senior Research Fellowships, and current Principal Research Fellows of the NHMRC. We also thank K. Thia for help with preparing the illustrations for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Trapani.

Related links

Related links

DATABASES

Cancer.gov

breast carcinoma

colon carcinoma

lung carcinoma

lymphoma

melanoma

myeloma

prostate carcinoma

Entrez

EBV

ectromelia

HSV-1

Listeria monocytogenes

murine cytomegalovirus

murine leukaemia virus

Mycobacterium tuberculosis

OMIM

FHL

LocusLink

Apc

Bcl-2

BID

C9

caspase-1

cathepsin B

CD1d

DPPI

FAS

FASL

granulysin

granzyme A

granzyme B

granzyme C

granzyme H

granzyme M

Her2/Neu

IFN-γ

IL-1

IL-2

IL-6

IL-12

k-Ras

MOG

MPR

perforin

PI3K

PI9

Rab27a

serglycin

SYK

TNF

TNFR1

TRAIL

TRAMP

ZAP70

Glossary

APOPTOSIS

A common form of cell death, also known as 'intrinsic' or 'programmed' cell death. Many physiological and developmental stimuli cause apoptosis, and themechanism is used frequently to delete unwanted, superfluous or potentially harmful cells, such as those undergoing transformation. Apoptosis involves cell shrinkage, condensation of chromatin in the periphery of the nucleus, cell-membrane blebbing and DNA fragmentation into multiples of about 180 base pairs. Eventually, the cell breaks up into many membrane-bound 'apoptotic bodies', which are phagocytosed by neighbouring cells.

SERPIN

A serine protease inhibitor. Serpins are a large family of intracellular and extracellular protease inhibitors, with many diverse functions. Some serpins show 'cross-class inhibition' and are, therefore, effective inhibitors of other protease families, such as the cysteine proteases. PI9 is a recently described serpin that is synthesized by cytotoxic T lymphocytes (CTLs). It is postulated to neutralize granzyme B molecules that are misdirected to the cytosol, thereby protecting the CTL from accidental suicide. Many viruses encode serpins that block caspases, the enzymes that are responsible for apoptotic death.

GRAFT-VERSUS-HOST DISEASE

(GVHD). Tissue damage in a recipient of allogeneic transplanted tissue (usually a bone-marrow transplant) that results from the activity of donor cytotoxic T lymphocytes that recognize the recipient's tissue as foreign. GVHD varies markedly in severity, but can be life threatening in severe cases. Typically, damage to the skin and gut mucosa leads to clinical manifestations.

NECROSIS

A common form of cell death that frequently results from toxic injury, hypoxia or stress. Necrosis involves cell swelling, dysregulation of plasma-membrane ion and water fluxes, mitochondrial swelling and the eventual release of cell contents into the interstitium. This form of cell death is usually accompanied by inflammation. Cells that are exposed to high concentrations of purified perforin usually die by osmotic lysis, which is a form of necrotic death.

TC1/TC2

A designation that is used to describe subsets of CD8+ cytotoxic T lyphocytes. TC1 cells typically secrete IFN-γ and GM-CSF and have strong cytotoxic capacity, whereas TC2 cells secrete IL-4 and IL-10 and are less effective killers.

FRATRICIDE

A form of cell killing in which one of a group of similar cells kills another member or members of the group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trapani, J., Smyth, M. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2, 735–747 (2002). https://doi.org/10.1038/nri911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing