Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T-cell signalling and autoimmunity: molecular mechanisms of disease

Key Points

  • The available T-cell repertoire — which is modified by interactions with self-peptide–MHC complexes in the thymus and in peripheral tissues — is a key factor in the development of autoimmune disease.

  • Autoimmunity has been proposed to arise owing to defects in peripheral T-cell tolerance, molecular mimicry or defects in regulatory T cells. In addition, this article outlines a new model for the development of autoimmunity by means of aberrant peripheral T-cell homeostasis.

  • Alterations in T-cell-signalling components that affect T-cell inhibitory-signalling pathways or T-cell survival can promote the development of autoimmunity.

  • The Cbl family of proteins have a negative regulatory role in T-cell signalling and have been linked to autoimmunity

  • The phosphatidylinositol 3-kinase (PI3K) pathway, which includes phosphatase and tensin homologue (PTEN) and protein kinase B (PKB), promotes T-cell survival by interfering with many cell-death pathways, including Fas-mediated apoptosis.

  • The forkhead transcription factor FKHRL1 is a downstream target of PKB signalling and potentially promotes T-cell survival by inhibiting the transcription of pro-apoptotic genes, such as Bim.

  • The forkhead transcription factor FOXP3 is an important regulator of lymphocyte homeostasis, but not due to its association with the PI3K–PKB pathway. Mutations in FOXP3 correlate with the autoimmune phenotype of scurfy mice and the human autoimmune disease IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome).

Abstract

The genetic manipulation of mice has led to insights into the molecular mechanisms of autoimmune disease. Recent studies have begun to identify ways in which signalling cascades can be disrupted that preclude the development of autoimmunity. This review outlines a new model for the induction of T-cell-mediated autoimmune diseases. I highlight recent data that illustrate the ways in which the altered survival of T cells and defects in the inhibitory signalling pathways of T cells can contribute to autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanisms of autoimmunity.
Figure 2: The Cbl family of molecules links to numerous signalling cascades.
Figure 3: Activation of the PI3K–PKB signalling pathway contributes to autoimmunity by inhibiting Fas-mediated apoptosis.
Figure 4: Is PI3K a central molecule that regulates autoimmunity by multiple mechanisms?

Similar content being viewed by others

References

  1. Andre, I. et al. Checkpoints in the progession of autoimmune disease: lessons from diabetes models. Proc. Natl Acad. Sci. USA 93, 2260–2263 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wakeland, E. K., Liu, K., Graham, R. R. & Behrens, T. W. Delineating the genetic basis of systemic lupus erythematosus. Immunity 15, 397–408 (2001).

    CAS  PubMed  Google Scholar 

  3. Falcone, M. & Sarvetnick, N. Cytokines that regulate autoimmune responses. Curr. Opin. Immunol. 11, 670–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. O'Shea, J. J., Ma, A. & Lipsky, P. E. Cytokines and autoimmunity. Nature Rev Immunol 2, 37–45 (2002). | PubMed |

    CAS  Google Scholar 

  5. Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nature Rev. Immunol. 2, 46–53 (2002). | PubMed |

    CAS  Google Scholar 

  6. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    CAS  PubMed  Google Scholar 

  7. Chui, D. et al. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc. Natl Acad. Sci. USA 98, 1142–1147 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Balomenos, D. et al. The cell-cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nature Med. 6, 171–176 (2000).

    CAS  PubMed  Google Scholar 

  9. Santiago-Raber, M.-L. et al. Role of cyclin-kinase inhibitor p21 in systemic autoimmunity. J. Immunol. 167, 4067–4074 (2001).

    CAS  PubMed  Google Scholar 

  10. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro-3 family. Science 293, 306–311 (2001).

    CAS  PubMed  Google Scholar 

  11. Ohashi, P. S. T-cell selection and autoimmunity: flexibility and tuning. Curr. Opin. Immunol. 8, 808–814 (1996).

    CAS  PubMed  Google Scholar 

  12. Sebzda, E. et al. Selection of the T-cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    CAS  PubMed  Google Scholar 

  13. Mariathasan, S., Zakarian, A., Bouchard, D. & Ohashi, P. S. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J. Immunol. 167, 4966–4973 (2001).

    CAS  PubMed  Google Scholar 

  14. Pircher, H., Hoffmann-Rohrer, U., Moskophidis, D., Zinkernagel, R. M. & Hengartner, H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature 351, 482–485 (1991).

    CAS  PubMed  Google Scholar 

  15. Yagi, J. & Janeway, C. A. Ligand thresholds at different stages of T-cell development. Int. Immunol. 2, 83–89 (1990).

    CAS  PubMed  Google Scholar 

  16. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    CAS  Google Scholar 

  17. Surh, C. D. & Sprent, J. Homeostatic T-cell proliferation: how far can T cells be activated to self-ligands? J. Exp. Med. 192, F9–F14 (2000).

    CAS  PubMed  Google Scholar 

  18. Garza, K. M., Chan, V. S. F. & Ohashi, P. S. T-cell tolerance and autoimmunity. Rev. Immunogenet. 2, 2–17 (2000).

    CAS  PubMed  Google Scholar 

  19. Carbone, F. R., Kurts, C., Bennett, S. R. M., Miller, J. F. A. P. & Heath, W. R. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol. Today 19, 368–373 (1998).

    CAS  PubMed  Google Scholar 

  20. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253–256 (2001).

    CAS  PubMed  Google Scholar 

  22. Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Med. 5, 774–779 (1999).

    CAS  PubMed  Google Scholar 

  23. Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).

    CAS  PubMed  Google Scholar 

  24. Garza, K. M. et al. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J. Exp. Med. 191, 2021–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bansal-Pakala, P., Jember, A. G. H. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med. 7, 907–912 (2001).

    CAS  PubMed  Google Scholar 

  26. Watanabe, Y. et al. Thymic microenvironmental abnormalities and thymic selection in NZB H-2bm12 mice. J. Immunol. 150, 4702–4712 (1993).

    CAS  PubMed  Google Scholar 

  27. Thomas-Vaslin, V. et al. Abnormal T-cell selection on NOD thymic epithelium is sufficient to induce autoimmune manifestations in C57BL/6 athymic nude mice. Proc. Natl Acad. Sci. USA 94, 4598–4603 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Geng, L., Solimena, M., Flavell, R. A., Sherwin, R. S. & Hayday, A. C. Widespread expression of an autoantigen–GAD65 transgene does not tolerize non-obese diabetic mice and can exacerbate disease. Proc. Natl Acad. Sci. USA 95, 10055–10060 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lühder, F., Katz, J., Benoist, C. & Mathis, D. Major histocompatibility complex class II molecules can protect from diabetes by positively selecting T cells with additional specificities. J. Exp. Med. 187, 379–387 (1998).

    PubMed  PubMed Central  Google Scholar 

  30. Ridgway, W. M. & Fathman, C. G. MHC structure and autoimmune T-cell repertoire development. Curr. Opin. Immunol. 11, 638–642 (1999).

    CAS  PubMed  Google Scholar 

  31. Marrack, P., Kappler, J. & Kotzin, B. L. Autoimmune disease: why and where it occurs. Nature Med. 7, 899–905 (2001).

    CAS  PubMed  Google Scholar 

  32. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Borlado, L. R. et al. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J. 14, 895–903 (2000).An important paper that shows directly that T-cell-specific expression of active PI3K leads to autoimmunity and tumour development in vivo.

    CAS  PubMed  Google Scholar 

  34. Parsons, M. J. et al. Expression of active PKB in T cells perturbs both T- and B-cell homeostasis and promotes inflammation. J. Immunol. 167, 42–48 (2001).As the PI3K pathway and PtdIns(3,4,5)P 3 can lead to the activation of many downstream events, this paper is important because it is the first study to show directly that PKB is responsible for the phenotype of altered lymphocyte homeostasis. In addition, it also shows that PKB-mediated T-cell survival is sufficient to alter B-cell homeostasis.

    CAS  PubMed  Google Scholar 

  35. Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    CAS  PubMed  Google Scholar 

  36. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  PubMed  Google Scholar 

  37. Sabelko-Downes, K. A. & Russell, J. H. The role of Fas ligand in vivo as a cause and regulator of pathogenesis. Curr. Opin. Immunol. 12, 330–335 (2000).

    CAS  PubMed  Google Scholar 

  38. Ohashi, P. S. et al. Ablation of 'tolerance' and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  39. Hawiger, D. et al. Dendritic cells induce peripheral T-cell unresponsiveness under steady-state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. den Boer, A. et al. Longevity of antigen presentation and activation status of APC are decisive factors in the balance between CTL immunity versus tolerance. J. Immunol. 167, 2522–2528 (2001).

    CAS  PubMed  Google Scholar 

  41. Schild, H. J., Rötzschke, O., Kalbacher, H. & Rammensee, H.-G. Limit of T-cell tolerance to self-proteins by peptide presentation. Science 247, 1587–1589 (1990).

    CAS  PubMed  Google Scholar 

  42. Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T-cell receptor develop spontaneous autoimmunity. Cell 72, 551–560 (1993).

    CAS  PubMed  Google Scholar 

  43. Damian, R. T. Molecular mimicry: antigen sharing by parasite and host and its consequences. Am. Nat. XCVIII, 129–149 (1964).

    Google Scholar 

  44. Oldstone, M. B. A. Molecular mimicry and autoimmune disease. Cell 50, 819–820 (1987).

    CAS  PubMed  Google Scholar 

  45. Oldstone, M. B. A., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    CAS  PubMed  Google Scholar 

  46. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T-cell epitope mimicry? Nature Immunol. 2, 797–801 (2001).

    CAS  Google Scholar 

  47. Zhang, Z.-X., Yang, L., Young, K. J., DuTemple, B. & Zhang, L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nature Med. 6, 782–789 (2000).

    CAS  PubMed  Google Scholar 

  48. Gonzalez, A., Andre-Schmutz, I., Carnaud, C., Mathis, D. & Benoist, C. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nature Immunol. 2, 1117–1125 (2001).

    CAS  Google Scholar 

  49. Shevach, E. M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    CAS  PubMed  Google Scholar 

  50. Tsui, F. W. L. & Tsui, H. W. Molecular basis of the motheaten phenotype. Immunol. Rev. 138, 185–206 (1994).

    CAS  PubMed  Google Scholar 

  51. Helgason, C. D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology and a shortened lifespan. Genes Dev. 12, 1610–1620 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    CAS  PubMed  Google Scholar 

  53. Jacobsen, M. et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nature Genet. 26, 495–499 (2000).

    CAS  PubMed  Google Scholar 

  54. Lynch, K. P. & Weiss, A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J. Biol. Chem. 276, 24341–24347 (2001).

    CAS  PubMed  Google Scholar 

  55. Thien, C. B. F. & Langdon, W. Y. CBL: many adaptations to regulate protein-tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–305 (2001).

    CAS  Google Scholar 

  56. Joazeiro, C. A. et al. The tyrosine-kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin–protein ligase. Science 286, 309–312 (1999).

    CAS  PubMed  Google Scholar 

  57. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell Biol. 18, 4872–4882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Naramura, M., Kole, H. K., Hu, R.-J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  60. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).References 59 and 60 were the first to show an important negative regulatory role for Cbl-b in altered T-cell function and autoimmunity.

    CAS  PubMed  Google Scholar 

  61. Viola, A. & Lanzavecchia, A. T-cell activation determined by T-cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    CAS  PubMed  Google Scholar 

  62. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

    CAS  PubMed  Google Scholar 

  63. Nicholson, L. B. et al. Heteroclitic proliferative responses and changes in cytokine profile induced by altered peptides: implications for autoimmunity. Proc. Natl Acad. Sci. USA 95, 264–269 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  65. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965–1014 (1999).

    CAS  PubMed  Google Scholar 

  66. Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J. 17, 743–753 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).This study provides the first link between Pten and Fas-mediated apoptosis in vivo

    CAS  PubMed  Google Scholar 

  68. Jones, R. G. et al. Protein kinase B (PKB) regulates T-lymphocyte survival, Bcl-XL levels, and NF-κB activation in vivo. J. Exp. Med. 191, 1721–1733 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Russell, J. H., Rush, B., Weaver, C. & Wang, R. Mature T cells of autoimmune lpr/lpr mice have a defect in antigen-stimulated suicide. Proc. Natl Acad. Sci. USA 90, 4409–4413 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Singer, G. G. & Abbas, A. K. The Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T-cell receptor transgenic mice. Immunity 1, 365–371 (1994).

    CAS  PubMed  Google Scholar 

  71. Bonfoco, E. et al. Inducible nonlymphoid expression of Fas ligand is responsible for superantigen-induced peripheral deletion of T cells. Immunity 9, 711–720 (1998).

    CAS  PubMed  Google Scholar 

  72. Sytwu, H.-K., Liblau, R. L. & McDevitt, H. O. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T-cell receptor transgenic mice. Immunity 5, 17–30 (1996).

    CAS  PubMed  Google Scholar 

  73. Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T-cell apoptosis. Immunity 10, 735–744 (1999).

    CAS  PubMed  Google Scholar 

  74. Nguyen, L. T. et al. TNF receptor 1 (TNFR1) and CD95 are not required for T-cell deletion after virus infection but contribute to peptide-induced deletion under limited conditions. Eur. J. Immunol. 30, 683–688 (2000).

    CAS  PubMed  Google Scholar 

  75. Reich, A., Korner, H., Sedgwick, J. D. & Pircher, H. Immune down-regulation and peripheral deletion of CD8 T cells does not require TNF receptor–ligand interactions nor CD95. Eur. J. Immunol. 30, 678–682 (2000).

    CAS  PubMed  Google Scholar 

  76. Nagata, S. & Suda, T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today 16, 39–43 (1995).

    CAS  PubMed  Google Scholar 

  77. Cohen, P. L. & Eisenberg, R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    CAS  PubMed  Google Scholar 

  78. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    CAS  PubMed  Google Scholar 

  79. Fisher, G. H. et al. Dominant interfering Fas gene mutations. Cell 81, 935–946 (1995).

    CAS  PubMed  Google Scholar 

  80. Sneller, M. C. et al. Clinical, immunologic and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89, 1341–1348 (1997).

    CAS  PubMed  Google Scholar 

  81. Vidal, S., Kono, D. H. & Theofilopoulos, A. N. Loci predisposing to autoimmunity in MRL-Fas Ipr and C57BL/6 Ipr mice. J. Clin. Invest. 101, 696–702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  83. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  84. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    CAS  PubMed  Google Scholar 

  85. Tang, E. D., Nunez, G., Barr, F. G. & Guan, K.-L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 274, 16741–16746 (1999).

    CAS  PubMed  Google Scholar 

  86. Dijkers, P. F., Medema, R. H., Lammers, J.-W. J., Koenderman, L. & Coffer, P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    CAS  PubMed  Google Scholar 

  87. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).The first study to show that Bim has a crucial role in autoimmunity.

    CAS  PubMed  Google Scholar 

  88. Kaestner, K. H., Knöchel, W. & Martinez, D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146 (2000).

    CAS  PubMed  Google Scholar 

  89. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).Identification of the genetic defect in the scurfy mouse as affecting a new Fox-family member.

    CAS  PubMed  Google Scholar 

  90. Clark, L. B. et al. Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. 162, 2546–2554 (1999).

    CAS  PubMed  Google Scholar 

  91. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet. 27, 18–20 (2001).

    CAS  PubMed  Google Scholar 

  92. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001).Identification of the IPEX genetic defect in humans as affecting a Fox transcription factor.

    CAS  PubMed  Google Scholar 

  93. Fang, D. & Liu, Y.-C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunol. 2, 870–875 (2001).

    CAS  Google Scholar 

  94. Parry, R. V. et al. Ligation of the T-cell co-stimulatory receptor CD28 activates the serine–threonine protein kinase protein kinase B. Eur. J. Immunol. 27, 2495–2501 (1997).

    CAS  PubMed  Google Scholar 

  95. Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl Acad. Sci. USA 94, 3627–3632 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Reif, K., Burgering, B. M. T. & Cantrell, D. A. Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J. Biol. Chem. 272, 14426–14433 (1997).

    CAS  PubMed  Google Scholar 

  97. Pallard, C. et al. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10, 525–535 (1999).

    CAS  PubMed  Google Scholar 

  98. Blume-Jensen, P., Janknecht, R. & Hunter, T. The kit receptor promotes cell survival via activation of PI3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr. Biol. 8, 779–782 (1998).

    CAS  PubMed  Google Scholar 

  99. Tilton, B. et al. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor-1 stimulates prolonged protein kinase-B and extracellular signal-regulated kinase-2 activation in T lymphocytes. J. Exp. Med. 192, 313–324 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sotsios, Y. & Ward, S. G. Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol. Rev. 177, 217–235 (2000).

    CAS  PubMed  Google Scholar 

  101. Swat, W. et al. SEK1/MKK4 is required for maintenance of a normal peripheral lymphoid compartment but not for lymphocyte development. Immunity 8, 625–634 (1998).

    CAS  PubMed  Google Scholar 

  102. Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    CAS  PubMed  Google Scholar 

  103. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T- and B-cell activation and differentiation. Immunity 14, 13–20 (2001).

    CAS  PubMed  Google Scholar 

  104. Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. Solution structure of the PX domain, a target of the SH3 domain. Nature Struct. Biol. 8, 526–530 (2001).

    CAS  PubMed  Google Scholar 

  105. Xu, J., Liu, D., Gill, G. & Songyang, Z. Regulation of cytokine-independent survival kinase (CISK) by the Phox-homology domain and phosphoinositides. J. Cell Biol. 154, 699–705 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Vanhaesebroeck, B. & Alessi, D. R. The PI3K–PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Toker, A. & Newton, A. C. Cellular signaling: pivoting around PDK-1. Cell 103, 185–188 (2000).

    CAS  PubMed  Google Scholar 

  108. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    CAS  PubMed  Google Scholar 

  110. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    CAS  PubMed  Google Scholar 

  111. March, M. E. & Ravichandran, K. Regulation of the immune response by SHIP. Semin. Immunol. 14, 37–47 (2002).

    CAS  PubMed  Google Scholar 

  112. Liu, Q. et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid-cell survival. Genes Dev. 13, 786–791 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, H.-Y. et al. Cbl promotes ubiquitination of the T-cell receptor ζ through an adaptor function of Zap-70. J. Biol. Chem. 276, 26004–26011 (2001).

    CAS  PubMed  Google Scholar 

  114. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    CAS  PubMed  Google Scholar 

  115. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    CAS  PubMed  Google Scholar 

  116. Kong, Y.-Y. et al. Vav regulates peptide-specific apoptosis in thymocytes. J. Exp. Med. 188, 2099–2111 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank J. Woodgett, P. Marrack and R. Yeung for insightful discussions, and H. Gu for sharing unpublished data. I also thank M. Gronski, D. Millar, R. Jones, L. Nguyen and M. Woo for reading the manuscript and R. Pileggi for invaluable support. Unfortunately, due to space constraints, many citations and explanations have been limited.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

BH3 domain

PH domain

PX domain

SH2 domain

SH3 domain

LocusLink

Axl

BAD

Bcl-2

BID

Bim

Bim

BTK

caspase-3

caspase-8

caspase-9

Cbl

Cbl

Cbl-b

Cbl-3

CD3

CD4

CD25

CD28

CD40

CD40L

CD45

CD95

FADD

FASL

FasL

FKHRL1

FOXP3

Foxp3

GM-CSF

GRB2

GSK3

IL-2

IL-7

IL-10

KIT

Lck

Mer

NFAT4

NFATc1

NFATc2

NFATp

PAKs

PDK1

PI3K

PKB/Akt

PLCγ1

PTEN

Rac

SGK

SHIP

SHP1

Syk

TGF-β

Tyr

Vav1

Vav2

ZAP70

OMIM

ALPS

IPEX

Glossary

LYMPHOPAENIC MICE

A loss of both T and B cells, as is seen in SCID or Rag-deficient mice or in lethally irradiated mice.

HYPERGAMMAGLOBULINAEMIA

An increased level of immunoglobulins in the blood.

THYROIDITIS

Inflammation of the thyroid. Hashimoto's thyroiditis is an organ-specific autoimmune disease that is characterized by hypothyroidism and an inflammatory lymphocytic infiltrate.

INFLAMMATORY BOWEL DISEASE

(IBD). A group of chronic inflammatory disorders of unknown origin that involve the gastrointestinal tract. Includes Crohn's disease and ulcerative colitis.

INSULIN-DEPENDENT DIABETES MELLITUS

(IDDM). Also known as juvenile-onset diabetes, this is a common endocrine disorder that results from the immune-mediated destruction of insulin-producing pancreatic β-islet cells.

EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

(EAE). Inflammation of the brain and spinal cord that is generally induced by the administration of myelin basic protein or myelin oligodendrocyte glycoprotein and adjuvants to disease-susceptible strains of mice.

LIPID RAFT

A cholesterol-rich region that provides ordered structure to the lipid bilayer and that is able to include or exclude specific signalling molecules and complexes.

SYSTEMIC LUPUS ERYTHEMATOSUS

(SLE). A disease of unknown origin in which tissues and cells are damaged by the deposition of pathogenic antibodies and immune complexes. Patients generally have abnormal B- and T-cell function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohashi, P. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat Rev Immunol 2, 427–438 (2002). https://doi.org/10.1038/nri822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing