Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NOD proteins: regulators of inflammation in health and disease

A Corrigendum to this article was published on 23 December 2013

This article has been updated

Key Points

  • NOD1 (nucleotide oligomerization domain-containing protein 1) and NOD2 are members of the NOD-like receptor family of proteins, which function to detect peptidoglycan and to stimulate host responses to limit bacterial infection. The link between NOD2 and the inflammatory bowel disease Crohn's disease highlights the importance of maintaining balanced innate immune responses through NOD signalling in response to the host microbiota at the intestinal mucosa.

  • NOD proteins react to peptidoglycan fragments that enter into the host cytosol by a variety of mechanisms, including direct infection by cyto-invasive pathogens, delivery through bacterial outer membrane vesicles or type IV secretion systems, and through membrane oligopeptide transporters, including solute carrier family 15 member 4 (SLC15A4) and pH-sensing regulatory factor of peptide transporter 1 (PEPT1). Fragments of peptidoglycan can bind to NOD1 and NOD2, inducing their self-association through their interaction at the nucleotide-binding domain (NBD). Oligomerization leads to the recruitment of receptor-interacting protein 2 (RIP2), which regulates the activation of the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways.

  • NOD signalling results in several downstream effects, including cytokine production, recruitment of neutrophils and inflammatory macrophages, and initiation of type 2 immunity. Mice that are deficient in the NOD signalling pathway have altered abilities to fight off bacterial infection. Interestingly, several pathogens have developed mechanisms to evade NOD-mediated immunity, including mechanisms that modify peptidoglycan.

  • Autophagy is also affected by NOD signalling. NOD proteins mediate the detection of bacteria, such as Shigella flexneri, in the cytosol of infected cells and, through their interaction with a key autophagy protein called ATG16L1 (autophagy-related protein 16-like 1), can bring the autophagy machinery to the site where the bacteria reside in the cytosol. The induction of autophagy wraps cytosolic bacteria in autophagosomes that subsequently fuse with lysosomes to degrade the bacteria. The interaction of ATG16L1 with NOD1 and NOD2 also regulates the ability of the NODs to drive inflammatory signalling. Indeed, ATG16L1 is a negative regulator of NOD signalling and reduces cytokine production in a manner that is independent of autophagy.

  • Most studies using mouse colitis models have shown that NODs have a protective role in intestinal inflammation. NODs maintain intestinal homeostasis by a variety of mechanisms including fortification of the intestinal barrier and regulation of early inflammatory pathways, such as those governed by interleukin-17 (IL-17), to limit infection and to promote mucosal healing. NOD signalling is also thought to influence the gut microbiota, although there is still controversy as to whether NOD deficiency itself or the underlying inflammation mediates changes in the gut microbial communities.

  • NOD proteins also affect the development of extra-intestinal diseases and cancer. Polymorphisms in the genes that encode NOD1 and NOD2 have been linked to asthma and atopy, graft-versus-host disease, the auto-inflammatory disease Blau syndrome, and cancer. In the case of cancer, NOD deficiency promotes carcinogenesis by providing an inflammatory microenvironment that is exacerbated by chemicals, such as dextran sodium sulphate (DSS), that induce epithelial injury.

Abstract

Entry of bacteria into host cells is an important virulence mechanism. Through peptidoglycan recognition, the nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2 enable detection of intracellular bacteria and promote their clearance through initiation of a pro-inflammatory transcriptional programme and other host defence pathways, including autophagy. Recent findings have expanded the scope of the cellular compartments monitored by NOD1 and NOD2 and have elucidated the signalling pathways that are triggered downstream of NOD activation. In vivo, NOD1 and NOD2 have complex roles, both during bacterial infection and at homeostasis. The association of alleles that encode constitutively active or constitutively inactive forms of NOD2 with different diseases highlights this complexity and indicates that a balanced level of NOD signalling is crucial for the maintenance of immune homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tripartite structure of NOD1 and NOD2.
Figure 2: NOD1 and NOD2 localization during infection and ligand recognition.
Figure 3: NOD1 and NOD2 stimulation drives autophagosome formation.
Figure 4: Role of NOD2 in Crohn's disease.

Similar content being viewed by others

Change history

  • 23 December 2013

    In the original article the name of the author Susan J. Robertson was mispelled. This error has now been corrected online.

References

  1. Girardin, S. E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Girardin, S. E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  4. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Proell, M., Riedl, S. J., Fritz, J. H., Rojas, A. M. & Schwarzenbacher, R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS ONE 3, e2119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Girardin, S. E. et al. Identification of the critical residues involved in peptidoglycan detection by Nod1. J. Biol. Chem. 280, 38648–38656 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tanabe, T. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 1587–1597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chin, A. I. et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416, 190–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 274, 14560–14567 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812–4818 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Park, J. H. et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178, 2380–2386 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Sorbara, M. T. et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858–873 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R. & Podolsky, D. K. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170, 21–26 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52, 1591–1597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, T. T. et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J. Biol. Chem. 285, 2227–2231 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Leung, C. H., Lam, W., Ma, D. L., Gullen, E. A. & Cheng, Y. C. Butyrate mediates nucleotide-binding and oligomerisation domain (NOD) 2-dependent mucosal immune responses against peptidoglycan. Eur. J. Immunol. 39, 3529–3537 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Rosenstiel, P. et al. TNFα and IFNγ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124, 1001–1009 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Gutierrez, O. et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J. Biol. Chem. 277, 41701–41705 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, Y. G. et al. Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections. Cell Host Microbe 9, 496–507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahashi, Y. et al. Up-regulation of NOD1 and NOD2 through TLR4 and TNF-alpha in LPS-treated murine macrophages. J. Vet. Med. Sci. 68, 471–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, K. H., Biswas, A., Liu, Y. J. & Kobayashi, K. S. Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J. Biol. Chem. 287, 39800–39811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zurek, B. et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS ONE 7, e41255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Girardin, S. E. et al. CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  28. Bielig, H. et al. NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR. Infect. Immun. 79, 1418–1427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol. 12, 372–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Marina-Garcia, N. et al. Clathrin- and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation. J. Immunol. 182, 4321–4327 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, J. et al. pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J. Biol. Chem. 284, 23818–23829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iyer, J. K. & Coggeshall, K. M. Cutting edge: primary innate immune cells respond efficiently to polymeric peptidoglycan, but not to peptidoglycan monomers. J. Immunol. 186, 3841–3845 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Vavricka, S. R. et al. hPepT1 transports muramyl dipeptide, activating NF-κB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127, 1401–1409 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Kasper, C. A. et al. Cell-cell propagation of NF-κB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection. Immunity 33, 804–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Fujimoto, Y., Pradipta, A. R., Inohara, N. & Fukase, K. Peptidoglycan as Nod1 ligand; fragment structures in the environment, chemical synthesis, and their innate immunostimulation. Nature Prod. Rep. 29, 568–579 (2012).

    Article  CAS  Google Scholar 

  36. Hasegawa, M. et al. Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J. Biol. Chem. 281, 29054–29063 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Pradipta, A. R., Fujimoto, Y., Hasegawa, M., Inohara, N. & Fukase, K. Characterization of natural human nucleotide-binding oligomerization domain protein 1 (Nod1) ligands from bacterial culture supernatant for elucidation of immune modulators in the environment. J. Biol. Chem. 285, 23607–23613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Med. 16, 228–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Macho Fernandez, E. et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60, 1050–1059 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Duerr, C. U. et al. Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunol. 4, 325–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Philpott, D. J. & Girardin, S. E. Nod-like receptors: sentinels at host membranes. Curr. Opin. Immunol. 22, 428–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunol. 11, 55–62 (2010).

    Article  CAS  Google Scholar 

  43. Lipinski, S. et al. RNAi screening identifies mediators of NOD2 signaling: implications for spatial specificity of MDP recognition. Proc. Natl Acad. Sci. USA 109, 21426–21431 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kufer, T. A., Kremmer, E., Banks, D. J. & Philpott, D. J. Role for erbin in bacterial activation of Nod2. Infect. Immun. 74, 3115–3124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McDonald, C. et al. A role for Erbin in the regulation of Nod2-dependent NF-κB signaling. J. Biol. Chem. 280, 40301–40309 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Fukazawa, A. et al. GEF-H1 mediated control of NOD1 dependent NF-κB activation by Shigella effectors. PLoS Pathog. 4, e1000228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geddes, K. et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nature Med. 17, 837–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Geddes, K. et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect. Immun. 78, 5107–5115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Le Bourhis, L. et al. Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection. Infect. Immun. 77, 4480–4486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grimes, C. L., Ariyananda Lde, Z., Melnyk, J. E. & O'Shea, E. K. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J. Am. Chem. Soc. 134, 13535–13537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mo, J. et al. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J. Biol. Chem. 287, 23057–23067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laroui, H. et al. L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J. Biol. Chem. 286, 31003–31013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Askari, N., Correa, R. G., Zhai, D. & Reed, J. C. Expression, purification, and characterization of recombinant NOD1 (NLRC1): a NLR family member. J. Biotechnol. 157, 75–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Zurek, B., Proell, M., Wagner, R. N., Schwarzenbacher, R. & Kufer, T. A. Mutational analysis of human NOD1 and NOD2 NACHT domains reveals different modes of activation. Innate Immun. 18, 100–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. van Duist, M. M. et al. A new CARD15 mutation in Blau syndrome. Eur. J. Hum. Genet. 13, 742–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Kanazawa, N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-κB activation: common genetic etiology with Blau syndrome. Blood 105, 1195–1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Magalhaes, J. G. et al. Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands. Eur. J. Immunol. 41, 1445–1455 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, Y. et al. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 282, 36223–36229 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Yeretssian, G. et al. Non-apoptotic role of BID in inflammation and innate immunity. Nature 474, 96–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Warner, N. et al. A genome-wide siRNA screen reveals positive and negative regulators of the NOD2 and NF-κaB signaling pathways. Sci. Signal. 6, rs3 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Nachbur, U., Vince, J. E., O'Reilly, L. A., Strasser, A. & Silke, J. Is BID required for NOD signalling? Nature 488, E4–E6 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Yeretssian, G et al. Yeretssian et al. reply. Nature 488, E6–E8 (2012).

    Article  CAS  Google Scholar 

  63. Magalhaes, J. G. et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep. 6, 1201–1207 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Legrand-Poels, S. et al. Modulation of Nod2-dependent NF-κB signaling by the actin cytoskeleton. J. Cell Sci. 120, 1299–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Eitel, J. et al. β-PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2. J. Immunol. 181, 2664–2671 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Stevens, C. et al. The intermediate filament protein, vimentin, is a regulator of NOD2 activity. Gut 62, 695–707 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Keestra, A. M. et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496, 233–237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao, Y. et al. Control of NOD2 and Rip2-dependent innate immune activation by GEF-H1. Inflamm. Bowel Dis. 18, 603–612 (2012).

    Google Scholar 

  69. Fritz, J. H. et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Rubino, S. J., Selvanantham, T., Girardin, S. E. & Philpott, D. J. Nod-like receptors in the control of intestinal inflammation. Curr. Opin. Immunol. 24, 398–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, Y. G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coulombe, F., Fiola, S., Akira, S., Cormier, Y. & Gosselin, J. Muramyl dipeptide induces NOD2-dependent Ly6Chigh monocyte recruitment to the lungs and protects against influenza virus infection. PLoS ONE 7, e36734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bansal, K. & Balaji, K. N. Intracellular pathogen sensor NOD2 programs macrophages to trigger Notch1 activation. J. Biol. Chem. 286, 5823–5835 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Kleinnijenhuis, J. et al. Bacille Calmette–Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Watanabe, T. et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J. Clin. Invest. 120, 1645–1662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Magalhaes, J. G. et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl Acad. Sci. USA 108, 14896–14901 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Magalhaes, J. G. et al. Nod2-dependent TH2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Fritz, J. H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Geddes, K., Magalhaes, J. G. & Girardin, S. E. Unleashing the therapeutic potential of NOD-like receptors. Nature Rev. Drug Discov. 8, 465–479 (2009).

    Article  CAS  Google Scholar 

  80. Hancock, R. E., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nature Rev. Microbiol. 10, 243–254 (2012).

    Article  CAS  Google Scholar 

  81. Sorbara, M. T. & Philpott, D. J. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol. Rev. 243, 40–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Chassaing, B. et al. Crohn disease-associated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae. J. Clin. Invest. 121, 966–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hruz, P. et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation. Proc. Natl Acad. Sci. USA 106, 12873–12878 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Frutuoso, M. S. et al. The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila. Microbes Infect. 12, 819–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, Y. G. et al. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 28, 246–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Meinzer, U. et al. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 11, 337–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Boneca, I. G. et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl Acad. Sci. USA 104, 997–1002 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sycuro, L. K. et al. Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential. PLoS Pathog. 8, e1002603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Frirdich, E. et al. Correction: Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in. PLoS Pathog. 8, e1002602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, M. et al. The Legionella pneumophila EnhC protein interferes with immunostimulatory muramyl peptide production to evade innate immunity. Cell Host Microbe 12, 166–176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Birmingham, C. L. et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3, 442–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T. & Brumell, J. H. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374–11383 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139, 1630–1641, 1641.e1–1641.e2 (2010).]

    Article  CAS  PubMed  Google Scholar 

  96. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature Med. 16, 90–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Lupfer, C. et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunol. 14, 480–488 (2013).

    Article  CAS  Google Scholar 

  98. Homer, C. R. et al. A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J. Biol. Chem. 287, 25565–25576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Anand, P. K. et al. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via ERK activation. J. Biol. Chem. (2011).

  100. Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, C. et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl Acad. Sci. USA 109, 11008–11013 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 53, 1658–1664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Simms, L. A. et al. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 57, 903–910 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Biswas, A. et al. Induction and rescue of Nod2-dependent TH1-driven granulomatous inflammation of the ileum. Proc. Natl Acad. Sci. USA 107, 14739–14744 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Robertson, S. J. et al. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 4, 222–231 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shanahan, M. T. et al. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut http://dx.doi.org/10.1136/gutjnl-2012-304190 (2013).

  108. Van Limbergen, S. et al. CD24-based assessment of NOD2 influence on Paneth cell numbers using intestinal stem cell cultures and genetic association analysis of CD24 in IBD. Gut http://dx.doi.org/10.1136/gutjnl-2013-305077 (2013).

  109. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shaw, M. H. et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nature Immunol. 10, 1267–1274 (2009).

    Article  CAS  Google Scholar 

  111. Caetano, B. C. et al. Intrinsic expression of Nod2 in CD4+ T lymphocytes is not necessary for the development of cell-mediated immunity and host resistance to Toxoplasma gondii. Eur. J. Immunol. 41, 3627–3631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zanello, G. et al. Nod2 activates NF-kB in CD4+ T cells but its expression is dispensable for T cell-induced colitis. PLoS ONE (in the press).

  113. Jiang, W. et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med. 210, 2465–2476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van Beelen, A. J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Brain, O. et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39, 521–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Zigmond, E. et al. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Jamontt, J., Petit, S., Clark, N., Parkinson, S. J. & Smith, P. Nucleotide-binding oligomerization domain 2 signaling promotes hyperresponsive macrophages and colitis in IL-10-deficient mice. J. Immunol. 190, 2948–2958 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Noguchi, E., Homma, Y., Kang, X., Netea, M. G. & Ma, X. A. Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nature Immunol. 10, 471–479 (2009).

    Article  CAS  Google Scholar 

  119. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nature Rev. Gastroenterol. Hepatol. 9, 599–608 (2012).

    Article  CAS  Google Scholar 

  121. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Natividad, J. M. et al. Commensal and probiotic bacteria influence intestinal barrier function and susceptibility to colitis in Nod1−/−; Nod2−/− mice. Inflamm. Bowel Dis. 18, 1434–1446 (2012).

    Google Scholar 

  123. Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hysi, P. et al. NOD1 variation, immunoglobulin E and asthma. Hum. Mol. Genet. 14, 935–941 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Weidinger, S. et al. Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J. Allergy Clin. Immunol. 116, 177–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nature Genet. 29, 19–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Holler, E. et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 104, 889–894 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Sfriso, P. et al. Blau syndrome, clinical and genetic aspects. Autoimmun. Rev. 12, 44–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Albrecht, M., Lengauer, T. & Schreiber, S. Disease-associated variants in PYPAF1 and NOD2 result in similar alterations of conserved sequence. Bioinformatics 19, 2171–2175 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Holler, E., Landfried, K., Meier, J., Hausmann, M. & Rogler, G. The role of bacteria and pattern recognition receptors in GVHD. Int. J. Inflamm. 2010, 814326 (2010).

    Article  CAS  Google Scholar 

  131. Landfried, K. et al. Recipient NOD2/CARD15 status affects cellular infiltrates in human intestinal graft-versus-host disease. Clin. Exp. Immunol. 159, 87–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Penack, O. et al. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J. Exp. Med. 206, 2101–2110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Companioni, O. et al. Polymorphisms of Helicobacter pylori signaling pathway genes and gastric cancer risk in the European prospective investigation into cancer-eurgast cohort. Int. J. Cancer 134, 92–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Rosenstiel, P. et al. Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of Helicobacter pylori infection. Cell. Microbiol. 8, 1188–1198 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Raju, D. et al. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142, 1160–1171 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. van Heel, D. A. et al. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet 365, 1794–1796 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Netea, M. G. et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J. Immunol. 174, 6518–6523 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Chamaillard, M. et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc. Natl Acad. Sci. USA 100, 3455–3460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gardet, A. & Xavier, R. J. Common alleles that influence autophagy and the risk for inflammatory bowel disease. Curr. Opin. Immunol. 24, 522–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Inohara, N. et al. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275, 27823–27831 (2000).

    CAS  PubMed  Google Scholar 

  141. Hasegawa, M. et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J. 27, 373–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Krieg, A. et al. XIAP mediates NOD signaling via interaction with RIP2. Proc. Natl Acad. Sci. USA 106, 14524–14529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bertrand, M. J. et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Damgaard, R. B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Ver Heul, A. M., Fowler, C. A., Ramaswamy, S. & Piper, R. C. Ubiquitin regulates caspase recruitment domain-mediated signaling by nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2. J. Biol. Chem. 288, 6890–6902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tigno-Aranjuez, J. T., Asara, J. M. & Abbott, D. W. Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses. Genes Dev. 24, 2666–2677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tao, M. et al. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr. Biol. 19, 1255–1263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl Acad. Sci. USA 106, 15813–15818 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rehman, A. et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 60, 1354–1362 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Mondot, S. et al. Altered gut microbiota composition in immune-impaired Nod2−/− mice. Gut 61, 634–635 (2012).

    Article  PubMed  Google Scholar 

  153. Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68, 10060–10067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mockelmann, N. et al. Investigation of innate immunity genes CARD4, CARD8 and CARD15 as germline susceptibility factors for colorectal cancer. BMC Gastroenterol. 9, 79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yao, Q. Nucleotide-binding oligomerization domain containing 2: structure, function, and diseases. Semin. Arthritis Rheum. 43, 125–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Duan, W. et al. Innate signals from Nod2 block respiratory tolerance and program TH2-driven allergic inflammation. J. Allergy Clin. Immunol. 126, 1284–1293.e10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vieira, S. M. et al. Joint NOD2/RIPK2 signaling regulates IL-17 axis and contributes to the development of experimental arthritis. J. Immunol. 188, 5116–5122 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Saha, S. et al. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host Microbe 5, 137–150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rosenzweig, H. L. et al. Nucleotide-binding oligomerization domain 2 and Toll-like receptor 2 function independently in a murine model of arthritis triggered by intraarticular peptidoglycan. Arthritis Rheum. 62, 1051–1059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Joosten, L. A. et al. Differential function of the NACHT-LRR (NLR) members Nod1 and Nod2 in arthritis. Proc. Natl Acad. Sci. USA 105, 9017–9022 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Tsuji, Y. et al. Sensing of commensal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. Immunity 37, 326–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Schertzer, J. D. et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 60, 2206–2215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shaw, P. J. et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity 34, 75–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tourneur, E. et al. Cyclosporine A impairs nucleotide binding oligomerization domain (Nod1)-mediated innate antibacterial renal defenses in mice and human transplant recipients. PLoS Pathog. 9, e1003152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.J.P., S.E.G. and K.C. acknowledge funding support from the Crohn's and Colitis Foundation of Canada, the Canadian Institutes of Health Research (CIHR) and the Canadian Association for Gastroenterology for their research discussed in this Review. M.T.S. is supported by a Canadian Graduate Scholarship – Doctoral fellowship from the CIHR and a CIHR Strategic Training Fellowship (STP-53877). S.J.R. is supported by a fellowship from the CIHR, the Canadian Association for Gastroenterology and Janssen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana J. Philpott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Microorganism-associated molecular patterns

(MAMPs). Highly conserved molecular determinants that are specific to microorganisms and that are detected by the host innate immune system.

Peptidoglycan

A heterogeneous polymer found in the cell wall of bacteria, comprising repeating units of N-acetylglucosamine and N-acetylmuramic acid, which form chains that are held together by short peptides. Immunostimulatory fragments of peptidoglycan can be released that drive the activation of NOD1 and NOD2.

Paneth cells

Highly specialized cells found at the base of the intestinal crypts, which produce abundant amounts of antimicrobial peptides, probably to protect adjacent intestinal stem cells from infection.

Butyrate

A short-chain fatty acid, which is generated by the microbial fermentation of dietary substrates and which is produced in the colon and may influence colonic disease.

Bacterial secretion systems

Complex molecular structures in the shape of a needle that are assembled by bacteria to deliver effectors directly from the bacterial cytoplasm to the host cell.

Outer membrane vesicles

(OMVs). Vesicles between 0.1 and 1 μm in length that bud from the outer membrane of Gram-negative bacteria and that contain a range of microorganism-associated molecular patterns, including cell wall components and bacterial DNA, which can activate host innate immunity.

TNBS-induced colitis

A model of hapten-induced colitis that is induced following intrarectal delivery of 2,4,6-trinitrobenzene sulphonic acid (TNBS), which induces a T cell-driven inflammation.

ATG16L1

(Autophagy-related protein 16-like 1). A crucial part of the macroautophagy machinery. ATG16L1 interacts with a conjugate of ATG5–ATG12 to drive the conjugation of phosphotidylethanolamine to LC3, forming LC3-II — a key step in autophagosome formation. ATG16L1 functions to determine the site of LC3-II formation.

Autophagy

A cytoplasmic bulk degradation system in which cytoplasmic cargo is targeted and sequestered in double-membrane vesicles, leading to subsequent fusion with the lysosome. This process is essential for the response to starvation because it facilitates the recycling of cellular components. In addition, autophagy can be targeted to intracellular bacteria to restrict their growth.

Blau syndrome

A rare familial inflammatory disorder that primarily affects the skin, joints and eyes, and that is caused by gain-of-function mutations in NOD2.

Early-onset sarcoidosis

A sporadic multi-organ inflammatory disorder that has a similar genetic aetiology to Blau syndrome (that is, it is characterized by gain-of-function mutations in NOD2), which typically manifests before the age of 4 years.

Dysbiosis

A condition in which the balance of the bacterial communities that constitute the intestinal microbiota is altered, which could represent a predisposition factor for several diseases.

Dextran sodum sulphate-induced colitis

(DSS-induced colitis). A model of colitis that is induced by oral administration of the chemical irritant DSS to drinking water, which results in epithelial erosion and intestinal inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philpott, D., Sorbara, M., Robertson, S. et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 14, 9–23 (2014). https://doi.org/10.1038/nri3565

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing