Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Do T cells need endogenous peptides for activation?

Abstract

T cells are sensitive to small numbers of antigenic peptide–MHC ligands that are distributed among an excess of endogenous peptide–MHC complexes on the surface of antigen-presenting cells. Although there are accumulating data that indicate a role for these endogenous peptide–MHC complexes in T-cell receptor triggering, whether they are necessary, and the nature of their function, is controversial. In this Opinion article, I argue that endogenous peptide–MHC complexes are required for T-cell stimulation and that their mechanism of action differs between CD4+ and CD8+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical model of TCR and co-receptor activity.
Figure 2: Models for how endogenous peptides aid T-cell activation.

Similar content being viewed by others

References

  1. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  Google Scholar 

  2. Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands. Immunity 9, 459–466 (1998).

    Article  CAS  Google Scholar 

  3. Cochran, J. R., Cameron, T. O. & Stern, L. J. The relationship of MHC–peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

    Article  CAS  Google Scholar 

  4. Daniels, M. A. & Jameson, S. C. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 191, 335–346 (2000).

    Article  CAS  Google Scholar 

  5. Cochran, J. R., Cameron, T. O., Stone, J. D., Lubetsky, J. B. & Stern, L. J. Receptor proximity, not intermolecular orientation, is critical for triggering T-cell activation. J. Biol. Chem. 276, 28068–28074 (2001).

    Article  CAS  Google Scholar 

  6. Cebecauer, M. et al. CD8+ cytotoxic T lymphocyte activation by soluble major histocompatibility complex–peptide dimers. J. Biol. Chem. 280, 23820–23828 (2005).

    Article  CAS  Google Scholar 

  7. Delon, J. et al. CD8 expression allows T cell signaling by monomeric peptide–MHC complexes. Immunity 9, 467–473 (1998).

    Article  CAS  Google Scholar 

  8. Randriamampita, C., Boulla, G., Revy, P., Lemaitre, F. & Trautmann, A. T cell adhesion lowers the threshold for antigen detection. Eur. J. Immunol. 33, 1215–1223 (2003).

    Article  CAS  Google Scholar 

  9. Doucey, M. A. et al. The β1 and β3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation. J. Biol. Chem. 278, 26983–26991 (2003).

    Article  CAS  Google Scholar 

  10. Ma, Z., Sharp, K. A., Janmey, P. A. & Finkel, T. H. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol. 6, e43 (2008).

    Article  Google Scholar 

  11. Wulfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunol. 3, 42–47 (2002).

    Article  CAS  Google Scholar 

  12. Stefanova, I., Dorfman, J. R. & Germain, R. N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

    Article  CAS  Google Scholar 

  13. Krogsgaard, M. et al. Agonist/endogenous peptide–MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article  CAS  Google Scholar 

  14. Yachi, P. P., Ampudia, J., Gascoigne, N. R. J. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8–T cell receptor interaction at the immunological synapse. Nature Immunol. 6, 785–792 (2005).

    Article  CAS  Google Scholar 

  15. Yachi, P. P., Lotz, C., Ampudia, J. & Gascoigne, N. R. J. T cell activation enhancement by endogenous pMHC acts for both weak and strong agonists but varies with differentiation state. J. Exp. Med. 204, 2747–2757 (2007).

    Article  CAS  Google Scholar 

  16. Ljunggren, H. G. et al. Empty MHC class I molecules come out in the cold. Nature 346, 476–480 (1990).

    Article  CAS  Google Scholar 

  17. Anikeeva, N. et al. Quantum dot/peptide–MHC biosensors reveal strong CD8-dependent cooperation between self and viral antigens that augment the T cell response. Proc. Natl Acad. Sci. USA 103, 16846–16851 (2006).

    Article  CAS  Google Scholar 

  18. Sporri, R. & Reis e Sousa, C. Self peptide/MHC class I complexes have a negligible effect on the response of some CD8+ T cells to foreign antigen. Eur. J. Immunol. 32, 3161–3170 (2002).

    Article  CAS  Google Scholar 

  19. Altan-Bonnet, G. & Germain, R. N. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 3, e356 (2005).

    Article  Google Scholar 

  20. Henderson, R. A. et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266 (1992).

    Article  CAS  Google Scholar 

  21. Wei, M. L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446 (1992).

    Article  CAS  Google Scholar 

  22. van der Merwe, P. A. & Davis, S. J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  Google Scholar 

  23. Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  Google Scholar 

  24. Gao, G. F. et al. Crystal structure of the human CD8aa and HLA-A2. Nature 387, 630–634 (1997).

    Article  CAS  Google Scholar 

  25. Wang, J. H. et al. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc. Natl Acad. Sci. USA 98, 10799–10804 (2001).

    Article  CAS  Google Scholar 

  26. Wu, H., Kwong, P. D. & Hendrickson, W. A. Dimeric association and segmental variability in the structure of human CD4. Nature 387, 527–530 (1997).

    Article  CAS  Google Scholar 

  27. Moldovan, M. C. et al. CD4 dimers constitute the functional component required for T cell activation. J. Immunol. 169, 6261–6268 (2002).

    Article  CAS  Google Scholar 

  28. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  Google Scholar 

  29. Hamad, A. R. A. et al. Potent T cell activation with dimeric peptide–major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 188, 1633–1640 (1998).

    Article  CAS  Google Scholar 

  30. Kerry, S. E. et al. Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide–MHC/TCR interaction overcomes lack of CD8 engagement. J. Immunol. 171, 4493–4503 (2003).

    Article  CAS  Google Scholar 

  31. Gakamsky, D. M. et al. CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys. J. 89, 2121–2133 (2005).

    Article  CAS  Google Scholar 

  32. Zal, T., Zal, M. A. & Gascoigne, N. R. J. Inhibition of T-cell receptor–coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity 16, 521–534 (2002).

    Article  CAS  Google Scholar 

  33. Alam, S. M. et al. T cell receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  Google Scholar 

  34. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  Google Scholar 

  35. Naeher, D. et al. A constant affinity threshold for T cell tolerance. J. Exp. Med. 204, 2553–2559 (2007).

    Article  CAS  Google Scholar 

  36. Segura, J. M. et al. Increased mobility of major histocompatibility complex I–peptide complexes decreases the sensitivity of antigen recognition. J. Biol. Chem. 283, 24254–24263 (2008).

    Article  CAS  Google Scholar 

  37. Krogsgaard, M. & Davis, M. M. How T cells 'see' antigen. Nature Immunol. 6, 239–245 (2005).

    Article  CAS  Google Scholar 

  38. Locksley, R. M., Reiner, S. L., Hatam, F., Littman, D. R. & Killeen, N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261, 1448–1451 (1993).

    Article  CAS  Google Scholar 

  39. Schilham, M. W. et al. Alloreactive cytotoxic T cells can develop and function in mice lacking both CD4 and CD8. Eur. J. Immunol. 23, 1299–1304 (1993).

    Article  CAS  Google Scholar 

  40. Loureiro, J. & Ploegh, H. L. Antigen presentation and the ubiquitin-proteasome system in host–pathogen interactions. Adv. Immunol. 92, 225–305 (2006).

    Article  CAS  Google Scholar 

  41. Redpath, S., Ghazal, P. & Gascoigne, N. R. J. Hijacking and exploitation of interleukin-10 by intracellular pathogens. Trends Microbiol. 9, 86–92 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work from this laboratory was supported by National Institutes of Health grants R01 GM065230 and AI074074. This is manuscript number 19648 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

The Gascoigne laboratory homepage

Glossary

Non-stimulatory peptide

Any peptide (either exogenously or endogenously derived) that, when presented by an MHC molecule, does not stimulate a T cell that expresses a particular T-cell receptor.

Endogenous peptide

A peptide that is naturally produced by a cell and is presented by MHC class I or class II molecules. Endogenous peptides were originally identified by the sequencing of purified MHC molecules. They are generally non-stimulatory because negative selection in the thymus results in apoptosis of cells that express T-cell receptors that are reactive with endogenous, stimulatory peptides.

Immunological synapse

A large junctional structure that is formed at the cell surface between a T cell and an antigen-presenting cell; it consists of molecules that are required for adhesion and signalling.

Quantum dot

An extremely small nanocrystalline semiconductor (10–50 nm) that absorbs incident photons and emits them at a longer wavelength. Because of a phenomenon called the quantum confinement effect, the colour (wavelength) of the emitted light is determined by the size of the nanocrystal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gascoigne, N. Do T cells need endogenous peptides for activation?. Nat Rev Immunol 8, 895–900 (2008). https://doi.org/10.1038/nri2431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing