Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunomodulatory mast cells: negative, as well as positive, regulators of immunity

Abstract

Mast cells can promote inflammation and other tissue changes in IgE-associated allergic disorders, as well as in certain innate and adaptive immune responses that are thought to be independent of IgE. However, mast cells can also have anti-inflammatory and immunosuppressive functions. Here, we review the evidence that mast cells can have negative, as well as positive, immunomodulatory roles in vivo, and we propose that mast cells can both enhance and later suppress certain features of an immune response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mast-cell development and tissue distribution.
Figure 2: Potential functions of mast-cell-derived IL-10.
Figure 3: Hypothetical model of how mast cells might promote or limit features of different contact hypersensitivity responses.

References

  1. Galli, S. J. et al. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Mekori, Y. A. & Metcalfe, D. D. Mast cells in innate immunity. Immunol. Rev. 173, 131–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Dawicki, W. & Marshall, J. S. New and emerging roles for mast cells in host defence. Curr. Opin. Immunol. 19, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nature Rev. Immunol. 6, 218–230 (2006).

    Article  CAS  Google Scholar 

  5. Grimbaldeston, M. A., Metz, M., Yu, M., Tsai, M. & Galli, S. J. Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Curr. Opin. Immunol. 18, 751–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Sayed, B. A., Christy, A., Quirion, M. R. & Brown, M. A. The master switch: the role of mast cells in autoimmunity and tolerance. Annu. Rev. Immunol. 26, 705–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Malaviya, R. & Abraham, S. N. Mast cell modulation of immune responses to bacteria. Immunol. Rev. 179, 16–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432, 512–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Metz, M. et al. Mast cells can enhance resistance to snake and honeybee venoms. Science 313, 526–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Piliponsky, A. M. et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nature Med. 14, 392–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Schneider, L. A., Schlenner, S. M., Feyerabend, T. B., Wunderlin, M. & Rodewald, H. R. Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin. J. Exp. Med. 204, 2629–2639 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyce, J. A. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol. Rev. 217, 168–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol. 6, 135–142 (2005).

    Article  CAS  Google Scholar 

  14. Mills, K. H. Regulatory T cells: friend or foe in immunity to infection? Nature Rev. Immunol. 4, 841–855 (2004).

    Article  CAS  Google Scholar 

  15. Kitamura, Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu. Rev. Immunol. 7, 59–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Metcalfe, D. D., Baram, D. & Mekori, Y. A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Kawakami, T. & Galli, S. J. Regulation of mast-cell and basophil function and survival by IgE. Nature Rev. Immunol. 2, 773–786 (2002).

    Article  CAS  Google Scholar 

  18. Ryan, J. J. et al. Mast cell homeostasis: a fundamental aspect of allergic disease. Crit. Rev. Immunol. 27, 15–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Miller, H. R., Wright, S. H., Knight, P. A. & Thornton, E. M. A novel function for transforming growth factor-β1: upregulation of the expression and the IgE-dependent extracellular release of a mucosal mast cell granule-specific β-chymase, mouse mast cell protease-1. Blood 93, 3473–3486 (1999).

    CAS  PubMed  Google Scholar 

  20. Blank, U. & Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Theoharides, T. C., Kempuraj, D., Tagen, M., Conti, P. & Kalogeromitros, D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217, 65–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Grimbaldeston, M. A. et al. Mast cell-deficient W-sash c-kit mutant KitW–sh/W–sh mice as a model for investigating mast cell biology in vivo. Am. J. Pathol. 167, 835–848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimbaldeston, M. A., Nakae, S., Kalesnikoff, J., Tsai, M. & Galli, S. J. Mast cell-derived interleukin-10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nature Immunol. 8, 1095–1104 (2007).

    Article  CAS  Google Scholar 

  24. Zhou, J. S., Xing, W., Friend, D. S., Austen, K. F. & Katz, H. R. Mast cell deficiency in Kit(W–sh) mice does not impair antibody-mediated arthritis. J. Exp. Med. 204, 2797–2802 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chervenick, P. A. & Boggs, D. R. Decreased neutrophils and megakaryocytes in anemic mice of genotype W/Wv. J. Cell. Physiol. 73, 25–30 (1969).

    Article  CAS  PubMed  Google Scholar 

  26. Wastling, J. M. et al. Histochemical and ultrastructural modification of mucosal mast cell granules in parasitized mice lacking the β-chymase, mouse mast cell protease-1. Am. J. Pathol. 153, 491–504 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. & Miller, H. R. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J. Exp. Med. 192, 1849–1856 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawrence, C. E., Paterson, Y. Y., Wright, S. H., Knight, P. A. & Miller, H. R. Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Tchougounova, E., Pejler, G. & Abrink, M. The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover. J. Exp. Med. 198, 423–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pejler, G., Abrink, M., Ringvall, M. & Wernersson, S. Mast cell proteases. Adv. Immunol. 95, 167–255 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. McNeil, H. P., Adachi, R. & Stevens, R. L. Mast cell-restricted tryptases: structure and function in inflammation and pathogen defense. J. Biol. Chem. 282, 20785–20789 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Thakurdas, S. M. et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J. Biol. Chem. 282, 20809–20815 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Shin, K. et al. Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection. J. Immunol. 180, 4885–4891 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Feyerabend, T. B. et al. Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol. Cell. Biol. 25, 6199–6210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scholten, J. et al. Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgen. Res. 17, 307–315 (2008).

    Article  CAS  Google Scholar 

  36. Newlands, G. F., Miller, H. R., MacKellar, A. & Galli, S. J. Stem cell factor contributes to intestinal mucosal mast cell hyperplasia in rats infected with Nippostrongylus brasiliensis or Trichinella spiralis, but anti-stem cell factor treatment decreases parasite egg production during N. brasiliensis infection. Blood 86, 1968–1976 (1995).

    CAS  PubMed  Google Scholar 

  37. Brandt, E. B. et al. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest. 112, 1666–1677 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gekara, N. O. & Weiss, S. Mast cells initiate early anti-Listeria host defences. Cell Microbiol. 10, 225–236 (2008).

    CAS  PubMed  Google Scholar 

  39. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Med. 13, 1211–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, J. et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J. Clin. Invest. 117, 3359–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arumugam, T., Ramachandran, V. & Logsdon, C. D. Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models. J. Natl Cancer Inst. 98, 1806–1818 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Norris, A. A. Pharmacology of sodium cromoglycate. Clin. Exp. Allergy 26 (Suppl. 4), 5–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Mekori, Y. A. & Metcalfe, D. D. Mast cell–T cell interactions. J. Allergy Clin. Immunol. 104, 517–523 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Skokos, D. et al. Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kambayashi, T. et al. Indirect involvement of allergen-captured mast cells in antigen presentation. Blood 111, 1489–1496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kashiwakura, J., Yokoi, H., Saito, H. & Okayama, Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol. 173, 5247–5257 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Nakae, S. et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 176, 2238–2248 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Frandji, P. et al. Antigen-dependent stimulation by bone marrow-derived mast cells of MHC class II-restricted T cell hybridoma. J. Immunol. 151, 6318–6328 (1993).

    CAS  PubMed  Google Scholar 

  49. Hart, P. H. et al. Dermal mast cells determine susceptibility to ultraviolet-B-induced systemic suppression of contact hypersensitivity responses in mice. J. Exp. Med. 187, 2045–2053 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Nakae, S. et al. Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc. Natl Acad. Sci. USA 102, 6467–6472 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue, L. et al. Prostaglandin D2 causes preferential induction of proinflammatory TH2 cytokine production through an action on chemoattractant receptor-like molecule expressed on TH2 cells. J. Immunol. 175, 6531–6536 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Theiner, G., Gessner, A. & Lutz, M. B. The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to TH2 polarized immune responses in vivo. Immunobiology 211, 463–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Gregory, G. D., Raju, S. S., Winandy, S. & Brown, M. A. Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic TH1 responses in EAE. J. Clin. Invest. 116, 1327–1336 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Caughey, G. H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 217, 141–154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stevens, R. L. & Adachi, R. Protease–proteoglycan complexes of mouse and human mast cells and importance of their β-tryptase–heparin complexes in inflammation and innate immunity. Immunol. Rev. 217, 155–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Wershil, B. K., Wang, Z. S., Gordon, J. R. & Galli, S. J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. Partial inhibition of the reaction with antiserum against tumor necrosis factor-α. J. Clin. Invest. 87, 446–453 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Y., Ramos, B. F. & Jakschik, B. A. Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 258, 1957–1959 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 192, 1441–1452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malaviya, R. & Abraham, S. N. Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J. Leukoc. Biol. 67, 841–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Demeure, C. E. et al. Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J. Immunol. 174, 3932–3940 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Kakurai, M. et al. Mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am. J. Pathol. 169, 1713–1721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maurer, M. et al. Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J. 20, 2460–2467 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Suto, H. et al. Mast cell-associated TNF promotes dendritic cell migration. J. Immunol. 176, 4102–4112 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Nigrovic, P. A. et al. Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proc. Natl Acad. Sci. USA 104, 2325–2330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakae, S. et al. Mast cell-derived TNF contributes to airway hyperreactivity, inflammation and TH2 cytokine production in an asthma model in mice. J. Allergy Clin. Immunol. 120, 48–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Nakae, S., Suto, H., Berry, G. J. & Galli, S. J. Mast cell-derived TNF can promote TH17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 109, 3640–3648 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Siebenhaar, F. et al. Control of Pseudomonas aeruginosa skin infections in mice is mast cell-dependent. Am. J. Pathol. 170, 1910–1916 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reuter, S. et al. Mast cell-derived tumour necrosis factor is essential for allergic airway disease. Eur. Respir. J. 31, 773–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Jawdat, D. M., Albert, E. J., Rowden, G., Haidl, I. D. & Marshall, J. S. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol. 173, 5275–5282 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. McLachlan, J. B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunol. 4, 1199–1205 (2003).

    Article  CAS  Google Scholar 

  73. Echtenacher, B., Mannel, D. N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Maurer, M. et al. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J. Exp. Med. 188, 2343–2348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109, 1351–1359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Orinska, Z. et al. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities. Nature Med. 13, 927–934 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Matsuda, H. et al. Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice. J. Immunol. 144, 259–262 (1990).

    CAS  PubMed  Google Scholar 

  78. Robbie-Ryan, M., Tanzola, M. B., Secor, V. H. & Brown, M. A. Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J. Immunol. 170, 1630–1634 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, Y. S. et al. Mast cells play a key role in the development of late airway hyperresponsiveness through TNF-α in a murine model of asthma. Eur. J. Immunol. 37, 1107–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Depinay, N., Hacini, F., Beghdadi, W., Peronet, R. & Mecheri, S. Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J. Immunol. 176, 4141–4146 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Maynard, C. L. et al. Regulatory T cells expressing interleukin 10 develop from FoxP3+ and FoxP3 precursor cells in the absence of interleukin 10. Nature Immunol. 8, 931–941 (2007).

    Article  CAS  Google Scholar 

  85. Beissert, S., Schwarz, A. & Schwarz, T. Regulatory T cells. J. Invest. Dermatol. 126, 15–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10. Nature Rev. Immunol. 7, 425–428 (2007).

    Article  CAS  Google Scholar 

  87. Askenase, P. W. et al. Defective elicitation of delayed-type hypersensitivity in W/Wv and Sl/Sld mast cell-deficient mice. J. Immunol. 131, 2687–2694 (1983).

    CAS  PubMed  Google Scholar 

  88. Bryce, P. J. et al. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20, 381–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Eder, W., Ege, M. J. & von Mutius, E. The asthma epidemic. N. Engl. J. Med. 355, 2226–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. McLachlan, J. B. et al. Mast cell activators: a new class of highly effective vaccine adjuvants. Nature Med. 20 April 2008 (doi: 10.1038/nm1757).

    Article  CAS  PubMed  Google Scholar 

  91. Larché, M., Akdis, C. A. & Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nature Rev. Immunol. 6, 761–771 (2006).

    Article  CAS  Google Scholar 

  92. Woolhiser, M. R., Okayama, Y., Gilfillan, A. M. & Metcalfe, D. D. IgG-dependent activation of human mast cells following up-regulation of FcγRI by IFN-γ. Eur. J. Immunol. 31, 3298–3307 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Jawdat, D. M., Rowden, G. & Marshall, J. S. Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. J. Immunol. 177, 1755–1762 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Hochegger, K. et al. Role of mast cells in experimental anti-glomerular basement membrane glomerulonephritis. Eur. J. Immunol. 35, 3074–3082 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J.G. is supported by grants from the United States Public Health Service National Institutes of Health. M.G. is supported by an Australian National Health and Medical Research Council CJ Martin Fellowship. The authors regret that space limitations prevented the specific citation of the work of many authors who have contributed to this field. We thank M. Larché for sharing his ideas about the possible role of mast cells in antigen-specific immunotherapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Galli.

Related links

Related links

FURTHER INFORMATION

Stephen Galli's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, S., Grimbaldeston, M. & Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8, 478–486 (2008). https://doi.org/10.1038/nri2327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing