Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to multimodal endoscopy imaging for gastrointestinal malignancy — an early indicator

Key Points

  • High-definition white-light endoscopy (WLE) is valuable for early detection of cancer because it provides detailed information about the lesion

  • WLE, chromoendoscopy and virtual chromoendoscopy permit the detection and characterization of dysplasia in the gastrointestinal tract

  • Narrow-band imaging is most effective in identifying changes in the vascular system

  • Autofluorescence imaging detects subtle changes in tissue after it has been activated by specific wavelengths of light

  • Confocal endomicroscopy is used for the in vivo diagnosis of pre-malignant lesions and early gastric cancer

  • Molecular imaging renders pathological changes visible at the cellular level

Abstract

Multimodality imaging is an essential aspect of endoscopic surveillance for the detection of neoplastic lesions, such as dysplasia or intramucosal cancer, because it improves the efficacy of endoscopic surveillance and therapeutic procedures in the gastrointestinal tract. This approach reveals mucosal abnormalities that cannot be detected by standard endoscopy. Currently, these imaging techniques are divided into those for primary detection and those for targeted imaging and characterization, the latter being used to visualize areas of interest in detail and permit histological evaluation. This Review outlines the use of virtual chromoendoscopy, narrow-band imaging, autofluorescence imaging, optical coherence tomography, confocal endomicroscopy and volumetric laser endomicroscopy as new imaging techniques for diagnostic investigation of the gastrointestinal tract. Insights into use of multimodal endoscopic imaging for early disease detection, in particular for pre-malignant lesions, in the oesophagus, stomach and colon are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virtual chromoendoscopy in the colon.
Figure 2: Enhanced imaging techniques and autofluorescence endoscopy for Barrett oesophagus.
Figure 3: Optical coherence tomography images of specialized intestinal metaplasia with and without intramucosal carcinoma or high-grade dysplasia.
Figure 4: Type IIc oesophageal Barrett cancer before and after virtual chromoendoscopy with i-scan.
Figure 5: Early gastric cancer before and after virtual chromoendoscopy.
Figure 6: Small flat polyp in the colon identified with high-definition endoscopy.
Figure 7: Ulcerative-colitis associated dysplasia with high-grade intraepithelial neoplasia.
Figure 8: Confocal endomicroscopy after staining with fluorescein in the colon.

Similar content being viewed by others

References

  1. East, J. E. et al. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) technology review. Endoscopy 48, 1029–1104 (2016).

    Article  PubMed  Google Scholar 

  2. Beg, S. & Ragunath, K. Image-enhanced endoscopy technology in the gastrointestinal tract: what is available? Best Pract. Res. Clin. Gastroenterol. 29, 627–638 (2015).

    Article  PubMed  Google Scholar 

  3. Cho, J. H. Advanced imaging technology other than narrow band imaging. Clin. Endosc. 48, 503–510 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jang, J. Y. The past, present, and future of image-enhanced endoscopy. Clin. Endosc. 48, 466–475 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oyama, T., Yahagi, N., Ponchon, T., Kiesslich, T. & Berr, F. How to establish endoscopic submucosal dissection in Western countries. World J. Gastroenterol. 21, 11209–11220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siersema, P. D. Image-enhanced endoscopy: clinical frontier and future perspectives. Best Pract. Res. Clin. Gastroenterol. 29, 523–524 (2015).

    Article  PubMed  Google Scholar 

  7. Kwon, R. S. et al. High-resolution and high-magnification endoscopes. Gastrointest. Endosc. 69, 399–407 (2009).

    Article  PubMed  Google Scholar 

  8. Tanaka, S., Kaltenbach, T., Chayama, K. & Soetikno, R. High-magnification colonoscopy (with videos). Gastrointest. Endosc. 64, 604–613 (2006).

    Article  PubMed  Google Scholar 

  9. Sauk, J., Hoffman, A., Anandasabapathy, S. & Kiesslich, R. High-definition and filter-aided colonoscopy. Gastroenterol. Clin. North Am. 39, 859–881 (2010).

    Article  PubMed  Google Scholar 

  10. Bruno, M. J. Magnification endoscopy, high resolution endoscopy, and chromoscopy;towards a better optical diagnosis. Gut 52 (Suppl. 4), 7–11 (2003).

    Google Scholar 

  11. ASGE Technology Committee. High-definition and high-magnification endoscopes. Gastrointest. Endosc. 80, 919–927 (2014).

  12. Manfredi, M. A. et al. Electronic chromoendoscopy. Gastrointest. Endosc. 81, 249–261 (2015).

    Article  PubMed  Google Scholar 

  13. Neumann, H., Nägel, A. & Buda, A. Advanced endoscopic imaging to improve adenoma detection. World J. Gastrointest. Endosc. 7, 224–229 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song, L. M. et al. Narrow band imaging and multiband imaging. Gastrointest. Endosc. 67, 581–589 (2008).

    Article  PubMed  Google Scholar 

  15. Kuznetsov, K., Lambert, R. & Rey, J. F. Narrow-band imaging: potential and limitations. Endoscopy 38, 76–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Gono, K. et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J. Biomed. Opt. 9, 568–577 (2004).

    Article  PubMed  Google Scholar 

  17. Kodashima, S. & Fujishiro, M. Novel image-enhanced endoscopy with i-scan technology. World J. Gastroenterol. 16, 1043–1049 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Negreanu, L., Preda, C. M., Ionescu, D. & Ferechide, D. Progress in digestive endoscopy: Flexible Spectral Imaging Colour Enhancement (FICE) — technical review. J. Med. Life 8, 416–422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaneko, K. et al. Effect of novel bright image enhanced endoscopy using blue laser imaging (BLI). Endosc. Int. Open 2, E212–E219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Osawa, H. & Yamamoto, H. Present and future status of flexible spectral imaging colour enhancement and blue laser imaging technology. Dig. Endosc. 26 (Suppl. 1), 105–115 (2014).

    Article  PubMed  Google Scholar 

  21. Song, L. M. et al. Autofluorescence imaging. Gastrointest. Endosc. 73, 647–650 (2011).

    Article  PubMed  Google Scholar 

  22. Curvers, W. L. et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's ooesophagus: a multicentre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57, 167–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kirtane, T. S. & Wagh, M. S. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. Gastroenterol. Res. Pract. 2014, 376367 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fujimoto, J. G., Pitris, C., Boppart, S. A. & Brezinski, M. E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. ASGE Technology Committee. Enhanced imaging in the GI tract: spectroscopy and optical coherence tomography. Gastrointest. Endosc. 78, 568–573 (2013).

  26. Goetz, M., Watson, A. & Kiesslich, R. Confocal laser endomicroscopy in gastrointestinal diseases. J. Biophotonics 4, 498–508 (2011).

    Article  PubMed  Google Scholar 

  27. Kiesslich, R., Goetz, M. & Neurath, M. F. Confocal laser endomicroscopy for gastrointestinal diseases. Gastrointest. Endosc. Clin. N. Am. 18, 451–466 (2008).

    Article  PubMed  Google Scholar 

  28. Becker, V. et al. Intravenous application offluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-to-imaging time. Gastrointest. Endosc. 68, 319–323 (2008).

    Article  PubMed  Google Scholar 

  29. ASGE Technology Committee. Confocal laser endomicroscopy. Gastrointest. Endosc. 80, 928–938 (2014).

  30. Goetz, M. Molecular imaging in GI endoscopy. Gastrointest. Endosc. 76, 1207–1209 (2012).

    Article  PubMed  Google Scholar 

  31. Goetz, M. & Wang, T. D. Molecular imaging in gastrointestinal endoscopy. Gastroenterology 138, 828–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Carns, J., Keahey, P., Quang, T., Anandasabapathy, S. & Richards-Kortum, R. Optical molecular imaging in the gastrointestinal tract. Gastrointest. Endosc. Clin. N. Am. 23, 707–723 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Enzinger, P. C. & Mayer, R. J. Esophageal cancer. N. Engl. J. Med. 349, 2241–2242 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Spechler, S. J., Sharma, P., Souza, R. F., Inadomi, J. M. & Shaheen, N. J. American Gastroenterological Association technical review on the management of Barrett's oesophagus. Gastroenterology 140, e18–e52 (2011).

    Article  PubMed  Google Scholar 

  35. Fock, K. M. & Ang, T. L. Global epidemiology of Barrett's oesophagus. Expert Rev. Gastroenterol. Hepatol. 5, 123–130 (2011).

    Article  PubMed  Google Scholar 

  36. Fitzgerald, R. C. et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut 63, 7–42 (2014).

    Article  PubMed  Google Scholar 

  37. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  38. American Gastroenterological Association et al. American Gastroenterological Association medical position statement on the management of Barrett's oesophagus. Gastroenterology 140, 1084–1091 (2011).

  39. Peters, F. P. et al. Surveillance history of endoscopically treated patients with early Barrett's neoplasia: nonadherence to the Seattle biopsy protocol leads to sampling error. Dis. Esophagus 21, 475–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Qumseya, B. J. et al. Survival in esophageal high-grade dysplasia/adenocarcinoma post endoscopic resection. Dig. Liver Dis. 45, 1028–1033 (2013).

    Article  PubMed  Google Scholar 

  41. Titi, M. et al. Development of subsquamous high-grade dysplasia and adenocarcinoma after successful radiofrequency ablation of Barrett's oesophagus. Gastroenterology 143, 564–566.e1 (2012).

    Article  PubMed  Google Scholar 

  42. Davis-Yadley, A. H., Neill, K. G., Malafa, M. P. & Pena, L. R. Advances in the endoscopic diagnosis of Barrett esophagus. Cancer Control 23, 67–77 (2016).

    Article  PubMed  Google Scholar 

  43. Canto, M. I. et al. Methylene blue selectively stains intestinal metaplasia in Barrett's oesophagus. Gastrointest. Endosc. 44, 1–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Ngamruengphong, S., Sharma, V. K. & Das, A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett's oesophagus: a meta-analysis. Gastrointest. Endosc. 69, 1021–1028 (2009).

    Article  PubMed  Google Scholar 

  45. Guelrud, M. & Herrera, I. Acetic acid improves identification of remnant islands of Barrett's epithelium after endoscopic therapy. Gastrointest. Endosc. 47, 512–515 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Guelrud, M. & Ehrlich, E. E. Endoscopic classification of Barrett's oesophagus. Gastrointest. Endosc. 59, 58–65 (2004).

    Article  PubMed  Google Scholar 

  47. Hoffman, A. et al. Acetic acid-guided biopsies after magnifying endoscopy compared with random biopsies in the detection of Barrett's oesophagus: a prospective randomized trial with crossover design. Gastrointest. Endosc. 64, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Longcroft-Wheaton, G., Duku, M., Mead, R., Poller, D. & Bhandari, P. Acetic acid spray is an effective tool for the endoscopic detection of neoplasia in patients with Barrett's oesophagus. Clin. Gastroenterol. Hepatol. 8, 843–847 (2010).

    Article  PubMed  Google Scholar 

  49. Qumseya, B. J. et al. Dysplasiaysplasia and neoplasia in patients with Barrett's oesophagus: a meta-analysis and systematic review. Clin. Gastroenterol. Hepatol. 11, 1562–1570.e2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Waxman, I., González- Haba-Ruiz, M. & Vázquez-Sequeiros, E. Endoscopic diagnosis and therapies for Barrett esophagus. A review. Rev. Esp. Enferm. Dig. 106, 103–119 (2014).

    Article  PubMed  Google Scholar 

  51. Mannath, J., Subramanian, V., Hawkey, C. J. & Ragunath, K. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett's oesophagus: a meta-analysis. Endoscopy 42, 351–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Sharma, P. et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett's oesophagus. Gastrointest. Endosc. 64, 167–175 (2006).

    Article  PubMed  Google Scholar 

  53. Sharma, P. et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett's ooesophagus: a prospective, international, randomised controlled trial. Gut 62, 15–21 (2013).

    Article  PubMed  Google Scholar 

  54. Kara, M. A., Ennahachi, M., Fockens, P., ten Kate, F. J. & Bergman, J. J. Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett's oesophagus by using narrow band imaging. Gastrointest. Endosc. 64, 155–166 (2006).

    Article  PubMed  Google Scholar 

  55. Song, J. et al. Meta-analysis of the effects of endoscopy with narrow band imaging in detecting dysplasia in Barrett's oesophagus. Dis. Esophagus 28, 560–566 (2014).

    Article  PubMed  Google Scholar 

  56. Curvers, W. L. et al. Mucosal morphology in Barrett's oesophagus: interobserver agreement and role of narrow band imaging. Endoscopy 40, 799–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Singh, R. et al. Preliminary feasibility study using a novel narrow-band imaging system with dual focus magnification capability in Barrett's oesophagus: is the time ripe to abandon random biopsies? Dig. Endosc. 25 (Suppl. 2), 151–156 (2013).

    Article  PubMed  Google Scholar 

  58. Georgakoudi, I., Jacobson, B. C. & Van Dam, J. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's oesophagus. Gastroenterology 120, 1620–1629 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Haringsma, J. & Tytgat, G. N. Fluorescence and autofluorescence. Baillieres Best Pract. Res. Clin. Gastroenterol. 13, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Kara, M. A., Peters, F. P. & ten Kate, F. J. W. Endoscopic video autofluorescence imaging may improve the detectionofearly neoplasia in patients with Barrett's oesophagus. Gastrointest. Endosc. 61, 679–685 (2005).

    Article  PubMed  Google Scholar 

  61. Curvers, W. L., Singh, R. & Song, L. M. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's ooesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57, 167–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Curvers, W. L. et al. Endoscopic trimodal imaging is more effective than standard endoscopy in identifying earlystage neoplasia in Barrett's oesophagus. Gastroenterology 139, 1106–1114 (2010).

    Article  PubMed  Google Scholar 

  63. Li, X. D. et al. Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus. Endoscopy 32, 921–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Evans, J. A. et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett's oesophagus. Clin. Gastroenterol. Hepatol. 4, 38–43 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Luigiano, C. et al. Outcomes of radiofrequency ablation for dysplastic Barrett's esophagus: a comprehensive review. Gastroenterol. Res. Pract. 2016, 4249510 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tsai, T. H. et al. Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett's oesophagus radiofrequency ablation treatment response (with videos). Gastrointest. Endosc. 76, 1104–1112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kiesslich, R. et al. In vivo histology of Barrett's oesophagus and associated neoplasia by confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 4, 979–987 (2006).

    Article  PubMed  Google Scholar 

  68. Gupta, A. et al. Utility of confocal laser endomicroscopy in identifying high-grade dysplasia and adenocarcinoma in Barrett's oesophagus: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 26, 369–377 (2014).

    Article  PubMed  Google Scholar 

  69. Sharma, P. et al. Real-time increased detection of neoplastic tissue in Barrett's oesophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest. Endosc. 74, 465–472 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Canto, M. I. et al. In vivo endomicroscopy improves detection of Barrett's esophagus-related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointest. Endosc. 79, 211–221 (2014).

    Article  PubMed  Google Scholar 

  71. Canto, M. I. et al. In vivo endoscope-based confocal laser endomicroscopy (eCLE) improves detection of unlocalized Barrett's oesophagus-related neoplasia over high resolution white light endoscopy: an international multicenter randomized controlled trial [abstract 1136]. Gastrointest. Endosc. 75 (Suppl.), AB174 (2012).

    Google Scholar 

  72. Bajbouj, M. et al. Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett's oesophagus. Endoscopy 42, 435–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Gorospe, E. C. et al. Diagnostic performance of two confocal endomicroscopy systems in detecting Barrett's dysplasia: a pilot study using a novel bioprobe in ex vivo tissue. Gastrointest. Endosc. 76, 933–938 (2012).

    Article  PubMed  Google Scholar 

  74. Bird-Lieberman, E. L. et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's oesophagus. Nat. Med. 18, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  76. Ferlay, J. et al. Estimates of the worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Hamashima, C. et al. The Japanese guidelines for gastric cancer screening. Jpn. J. Clin. Oncol. 38, 259–267 (2008).

    Article  PubMed  Google Scholar 

  78. Khazaei, S., Rezaeian, S., Soheylizad, M., Khazaei, S. & Biderafsh, A. Global incidence and mortality rates of stomach cancer and the human development index: an ecological study. Asian Pac. J. Cancer Prev. 17, 1701–1704 (2016).

    Article  PubMed  Google Scholar 

  79. Kaise, M. Advanced endoscopic imaging for early gastric cancer. Best Pract. Res. Clin. Gastroenterol. 29, 575–587 (2015).

    Article  PubMed  Google Scholar 

  80. Dinis-Ribeiro, M. et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy 44, 74–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Kawahara, Y. et al. Novel chromoendoscopic method using an acetic acid-indigocarmine mixture for diagnostic accuracy in delineating the margin of early gastric cancers. Dig. Endosc. 21, 14–19 (2009).

    Article  PubMed  Google Scholar 

  82. Kaise, M. et al. Magnifying endoscopy combined with narrow-band imaging for differential diagnosis of superficial depressed gastric lesions. Endoscopy 41, 310–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Kato, M. et al. Trimodal imaging endoscopy may improve diagnostic accuracy of early gastric neoplasia: a feasibility study. Gastrointest. Endosc. 70, 899–906 (2009).

    Article  PubMed  Google Scholar 

  84. Pimentel-Nunes, P. et al. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions. Endoscopy 44, 236–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Yoshizawa, M. et al. Diagnosis of elevated-type early gastric cancers by the optimal band imaging system. Gastrointest. Endosc. 69, 19–28 (2009).

    Article  PubMed  Google Scholar 

  86. Bansal, A., Ulusarac, O., Mathur, S. & Sharma, P. Correlation between narrow band imaging and nonneoplastic gastric pathology: a pilot feasibility trial. Gastrointest. Endosc. 67, 210–216 (2008).

    Article  PubMed  Google Scholar 

  87. Capelle, L. G. et al. Narrow band imaging for the detection of gastric intestinal metaplasia and dysplasia during surveillance endoscopy. Dig. Dis. Sci. 55, 3442–3448 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ezoe, Y. et al. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: a prospective study. Gastrointest. Endosc. 71, 477–484 (2010).

    Article  PubMed  Google Scholar 

  89. Ezoe, Y. et al. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology 141, 2017–2025 (2011).

    Article  PubMed  Google Scholar 

  90. Yao, K., Anagnostopoulos, G. K. & Ragunath, K. Magnifying endoscopy for diagnosing and delineating early gastric cancer. Endoscopy 41, 462–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Yao, K., Oishi, T., Matsui, T., Yao, T. & Iwashita, A. Novel magnified endoscopic findings of microvascular architecture in intramucosal gastric cancer. Gastrointest. Endosc. 56, 279–284 (2002).

    Article  PubMed  Google Scholar 

  92. Yao, K. et al. Clinical application of magnification endoscopy and narrow-band imaging in the upper gastrointestinal tract: new imaging techniques for detecting and characterizing gastrointestinal neoplasia. Gastrointest. Endosc. Clin. N. Am. 18, 415–433 (2008).

    Article  PubMed  Google Scholar 

  93. Hayee, B. et al. Magnification narrow-band imaging for the diagnosis of early gastric cancer: a review of the Japanese literature for the Western endoscopist. Gastrointest. Endosc. 78, 452–461 (2013).

    Article  PubMed  Google Scholar 

  94. Nonaka, K. et al. Usefulness of the DL in ME with NBI for determining the expanded area of earlystage differentiated gastric carcinoma. World J. Gastrointest. Endosc. 4, 362–367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yao, K. et al. Novel zoom endoscopy technique for visualizing the microvascular architecture in gastric mucosa: a new diagnostic endoscopic system for early gastric cancer. Clin. Gastroenterol. Hepatol. 3, S23–S26 (2005).

    Article  PubMed  Google Scholar 

  96. Song, J. et al. Meta-analysis: narrow band imaging for diagnosis of gastric intestinal metaplasia. PLoS ONE 9, e94869 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kikuste, I. et al. Systematic review of the diagnosis of gastric premalignant conditions and neoplasia with high-resolution endoscopic technologies. Scand. J. Gastroenterol. 48, 1108–1117 (2013).

    Article  PubMed  Google Scholar 

  98. Nakayosi, T. et al. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy 36, 1080–1084 (2004).

    Article  Google Scholar 

  99. Dias-Silva, D. et al. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using web-based video. Gastrointest. Endosc. 79, 910–920 (2014).

    Article  PubMed  Google Scholar 

  100. Zhang, J. N. et al. Classification of gastric pit patterns by confocal endomicroscopy. Gastrointest. Endosc. 67, 843–853 (2008).

    Article  PubMed  Google Scholar 

  101. Guo, Y. T. et al. Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study. Endoscopy 40, 547–553 (2008).

    Article  PubMed  Google Scholar 

  102. Li, W. B. et al. Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions. Gut 60, 299–306 (2011).

    Article  PubMed  Google Scholar 

  103. Hoetker, M. S. et al. Molecular in vivo imaging of gastric cancer in a human-murine xenograft model: targeting epidermal growth factor receptor (EGFR). Gastrointest. Endosc. 76, 612–620 (2012).

    Article  PubMed  Google Scholar 

  104. Li, Z. et al. In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy. Endoscopy 45, 79–85 (2013).

    Article  PubMed  Google Scholar 

  105. Zauber, A. G. et al. Colonoscopic polypectomy and long-term prevention of colourectal-cancer deaths. N. Engl. J. Med. 366, 687–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gomez, S. L. et al. Recent declines in cancer incidence: related to the Great Recession? Cancer Causes Control 28, 145–154 (2017).

    Article  PubMed  Google Scholar 

  107. Robertson, D. J. et al. Colorectal cancer in patients under close colonoscopic surveillance. Gastroenterology 129, 34–41 (2005).

    Article  PubMed  Google Scholar 

  108. Rey, J. W., Kiesslich, R. & Hoffman, A. New aspects of modern endoscopy. World J. Gastrointest. Endosc. 6, 334–344 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rex, D. K. et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 112, 24–28 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Ahn, S. B. et al. The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6, 64–70 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Heresbach, D. et al. Miss rate for colourectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies. Endoscopy 40, 284–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. van Rijn, J. C. et al. Polyp miss rate determined by tandem colonoscopy: a systematic review. Am. J. Gastroenterol. 101, 343–350 (2006).

    Article  PubMed  Google Scholar 

  113. Soetikno, R. M. et al. Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA 299, 1027–1035 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Kaminski, M. F. et al. Quality indicators for colonoscopy and the risk of interval cancer. N. Engl. J. Med. 362, 1795–1803 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Wallace, M. B. & Kiesslich, R. Advances in endoscopic imaging of colorectal neoplasia. Gastroenterology 138, 2140–2150 (2010).

    Article  PubMed  Google Scholar 

  116. Subramanian, V. et al. Comparison of high definition with standard white light endoscopy for detection of dysplastic lesions during surveillance colonoscopy in patients with colonic inflammatory bowel disease. Inflamm. Bowel Dis. 19, 350–355 (2013).

    Article  PubMed  Google Scholar 

  117. East, J. E. et al. A comparative study of standard versus high definition colonoscopy for adenoma and hyperplastic polyp detection with optimized withdrawal technique. Aliment. Pharmacol. Ther. 28, 768–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Pellise, M. et al. Impact of wide-angle, high-definition endoscopy in the diagnosis of colorectal neoplasia: a randomized controlled trial. Gastroenterology 135, 1062–1068 (2008).

    Article  PubMed  Google Scholar 

  119. Hoffman, A. et al. High definition colonoscopy combined with i-scan is superior in the detection of colourectal neoplasias compared to standard video colonoscopy — a prospective randomized controlled trial. Endoscopy 42, 827–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Burke, C. A. et al. A comparison of high-definition versus conventional colonoscopes for polyp detection. Dig. Dis. Sci. 55, 1716–1720 (2010).

    Article  PubMed  Google Scholar 

  121. Buchner, A. M. et al. High definition colonoscopy detects colourectal polyps at a higher rate than standard white light colonoscopy. Clin. Gastroenterol. Hepatol. 8, 364–370 (2010).

    Article  PubMed  Google Scholar 

  122. Brown, S. R., Baraza, W. & Hurlstone, P. Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. Cochrane Database Syst. Rev. 4, CD006439 (2007).

    Google Scholar 

  123. Kiesslich, R., von Bergh, M., Hahn, M., Hermann, G. & Jung, M. Chromoendoscopy with indigocarmine improves the detection of adenomatous and nonadenomatous lesions in the colon. Endoscopy 33, 1001–1006 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Kiesslich, R. et al. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 124, 880–888 (2003).

    Article  PubMed  Google Scholar 

  125. Hurlstone, D. P. et al. Further validation of high-magnification chromoscopic-colonoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 126, 376–378 (2004).

    Article  PubMed  Google Scholar 

  126. Rutter, M. D. et al. Pancolonic indigo carmine dye spraying for the detection of dysplasia in ulcerative colitis. Gut 53, 256–260 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hurlstone, D. P., Sanders, D. S., Lobo, A. J., McAlindon, M. E. & Cross, S. S. Indigo carmine-assisted high-magnification chromoscopic colonoscopy for the detection and characterisation of intraepithelial neoplasia in ulcerative colitis: a prospective evaluation. Endoscopy 37, 1186–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Kiesslich, R. et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132, 874–882 (2007).

    Article  PubMed  Google Scholar 

  129. Marion, J. F. et al. Chromoendoscopy-targeted biopsies are superior to standard colonoscopic surveillance for detecting dysplasia in inflammatory bowel disease patients: a prospective endoscopic trial. Am. J. Gastroenterol. 103, 2342–2349 (2008).

    Article  PubMed  Google Scholar 

  130. Subramanian, V. et al. High definition colonoscopy versus standard video endoscopy for the detection of colonic polyps: a meta-analysis. Endoscopy 43, 499–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Mowat, C. et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 60, 571–607 (2011).

    Article  PubMed  Google Scholar 

  132. Laine, L. et al. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastrointest. Endosc. 81, 489–501.e26 (2015).

    Article  PubMed  Google Scholar 

  133. Paggi, S. et al. The impact of narrow band imaging in screening colonoscopy: a randomized controlled trial. Clin. Gastroenterol. Hepatol. 7, 1049–1054 (2009).

    Article  PubMed  Google Scholar 

  134. Van den Broek, F. J. C. et al. Systematic review of narrow-band imaging for the detection and differentiation of neoplastic and nonneoplastic lesions. Gastrointest. Endosc. 69, 124–135 (2009).

    Article  PubMed  Google Scholar 

  135. Chiu, H. M. et al. A prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional colonoscopy in the diagnosis of colourectal neoplasia. Gut 56, 373–379 (2007).

    Article  PubMed  Google Scholar 

  136. East, J. E., Suzuki, N. & Saunders, B. P. Comparison of magnified pit pattern interpretation with narrow band imaging versus chromoendoscopy for diminutive colonic polyps: a pilot study. Gastrointest. Endosc. 66, 310–316 (2007).

    Article  PubMed  Google Scholar 

  137. Su, M. Y. et al. Comparative study of conventional colonoscopy, chromoendoscopy, and narrow-band imaging systems in differential diagnosis of neoplastic and nonneoplastic colonic polyps. Am. J. Gastroenterol. 101, 2711–2766 (2006).

    Article  PubMed  Google Scholar 

  138. Rastogi, A. et al. Narrow-band imaging colonoscopy-a pilot feasibility study for the detection of polyps and correlation of surface patterns with polyp histologic diagnosis. Gastrointest. Endosc. 67, 280–286 (2008).

    Article  PubMed  Google Scholar 

  139. Tischendorf, J. J. et al. Value of magnifying chromoendoscopy and narrow band imaging (NBI) in classifying colourectal polyps: a prospective controlled study. Endoscopy 39, 1092–1096 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colourectal cancer in vivo . Gastroenterology 127, 706–713 (2004).

    Article  PubMed  Google Scholar 

  141. Kiesslich, R. et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61, 1146–1153 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Kiesslich, R. et al. Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 133, 1769–1778 (2007).

    Article  PubMed  Google Scholar 

  143. García-Figueiras, R. et al. Advanced imaging of colorectal cancer: from anatomy to molecular imaging. Insights Imaging 7, 285–309 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Foersch, S. et al. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 59, 1046–1055 (2010).

    Article  PubMed  Google Scholar 

  145. Hsiung, P. L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14, 454–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, Z., Miller, S. J., Joshi, B. P. & Wang, T. D. In vivo targeting of colonic dysplasia on fluorescence endoscopy with near-infrared octapeptide. Gut 62, 395–403 (2013).

    Article  PubMed  Google Scholar 

  147. van den Broek, F. J. et al. Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin. Gastroenterol. Hepatol. 7, 288–295 (2009).

    Article  PubMed  Google Scholar 

  148. van den Broek, F. J. et al. Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut 57, 1083–1089 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Keller, R., Winde, G., Terpe, H. J., Foerster, E. C. & Domschke, W. Fluorescence endoscopy using a fluorescein-labeled monoclonal antibody against carcinoembryonic antigen in patients with colourectal carcinoma and adenoma. Endoscopy 34, 801–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Mayinger, B. et al. Early detection of premalignant conditions in the colon by fluorescence endoscopy using local sensitization with hexaminolevulinate. Endoscopy 40, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Halpern, Z. et al. Comparison of adenoma detection and miss rates between a novel balloon colonoscope and standard colonoscopy: a randomized tandem study. Endoscopy 47, 238–244 (2015).

    Article  PubMed  Google Scholar 

  152. Gralnek, I. M. Emerging technological advancements in colonoscopy: Third Eye® Retroscope® and Third Eye® Panoramic(TM), Fuse® Full Spectrum Endoscopy® colonoscopy platform, Extra-Wide-Angle-View colonoscope, and NaviAid(TM) G-EYE(TM) balloon colonoscope. Dig. Endosc. 27, 223–231 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. R.K. and A.H. made substantial discussions to discussions and reviewed/edited the manuscript before submission. A.H. wrote the article.

Corresponding author

Correspondence to Arthur Hoffman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, A., Manner, H., Rey, J. et al. A guide to multimodal endoscopy imaging for gastrointestinal malignancy — an early indicator. Nat Rev Gastroenterol Hepatol 14, 421–434 (2017). https://doi.org/10.1038/nrgastro.2017.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.46

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer