Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the management of the explanted donor liver

Key Points

  • Successful organ yield depends on intrinsic donor characteristics as well as clinical interventions on the potential donor and the explanted liver

  • With low costs and simple technical and logistical requirements, static cold storage is still the standard method of preservation in liver transplantation, rather than machine perfusion

  • Dynamic storage systems for liver preservation have not yet realized their potential but might have tremendous consequences for transplant outcome and surgical routines

  • With restrictive donor selection, outcomes of split-liver transplantation can be comparable to full-size liver transplantation and help to expand the donor pool

Abstract

Liver transplantation is the best therapy in end-stage liver disease. Donor organ shortage and efforts to expand the donor organ pool are permanent issues given that advances in perioperative management and immunosuppressive therapy have brought the procedure into widespread clinical use. The management of organ procurement, including donor preconditioning and adequate organ storage, has a key role in transplantation. However, the organ procurement process can differ substantially between transplant centres, depending on local and national preferences. Advances in the field have come from experimental and clinical research on dynamic storage systems, such as machine perfusion devices, as an alternative to static cold storage. Determination of the clinical significance of these new systems is a topic worthy of future investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a persufflated liver during cold storage on ice.

Similar content being viewed by others

References

  1. Monbaliu, D., Pirenne, J. & Talbot, D. Liver transplantation using donation after cardiac death donors. J. Hepatol. 56, 474–485 (2012).

    Article  PubMed  Google Scholar 

  2. Kluger, M. D., Memeo, R., Laurent, A., Tayar, C. & Cherqui, D. Survey of adult liver transplantation techniques (SALT): an international study of current practices in deceased donor liver transplantation. HPB (Oxford) 13, 692–698 (2011).

    Article  Google Scholar 

  3. Starzl, T. E. et al. A flexible procedure for multiple cadaveric organ procurement. Surg. Gynecol. Obstet. 158, 223–230 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Starzl, T. E., Miller, C., Broznick, B. & Makowka, L. An improved technique for multiple organ harvesting. Surg. Gynecol. Obstet. 165, 343–348 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wunderlich, H. et al. DTG procurement guidelines in heart beating donors. Transplant Int. 24, 733–757 (2011).

    Article  Google Scholar 

  6. Casavilla, A. et al. Experience with liver and kidney allografts from non-heart-beating donors. Transplantation 59, 197–203 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Selck, F. W., Deb, P. & Grossman, E. B. Deceased organ donor characteristics and clinical interventions associated with organ yield. Am. J. Transplant. 8, 965–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Floerchinger, B., Oberhuber, R. & Tullius, S. G. Effects of brain death on organ quality and transplant outcome. Transplant. Rev. (Orlando) 26, 54–59 (2012).

    Article  Google Scholar 

  9. Cittanova, M. L. et al. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348, 1620–1622 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Christidis, C. et al. Worsening of hepatic dysfunction as a consequence of repeated hydroxyethylstarch infusions. J. Hepatol. 35, 726–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Shah, V. R. Aggressive management of multiorgan donor. Transplant. Proc. 40, 1087–1090 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Weiss, S. et al. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am. J. Transplant. 7, 1584–1593 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kotsch, K. et al. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial. Ann. Surg. 248, 1042–1050 (2008).

    Article  PubMed  Google Scholar 

  14. Wood, K. E., Becker, B. N., McCartney, J. G., D'Alessandro, A. M. & Coursin, D. B. Care of the potential organ donor. N. Engl. J. Med. 351, 2730–2739 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Macdonald, P. S. et al. A systematic review and meta-analysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Crit. Care Med. 40, 1635–1644 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. D'Amico, F. et al. Use of N-acetylcysteine during liver procurement: a prospective randomized controlled study. Liver Transplant. 19, 135–144 (2013).

    Article  Google Scholar 

  17. Azoulay, D. et al. Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft's preservation and function: the ying and the yang. Ann. Surg. 242, 133–139 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koneru, B. et al. The ischemic preconditioning paradox in deceased donor liver transplantation—evidence from a prospective randomized single blind clinical trial. Am. J. Transplant. 7, 2788–2796 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Cescon, M. et al. Effect of ischemic preconditioning in whole liver transplantation from deceased donors. A pilot study. Liver Transplant. 12, 628–635 (2006).

    Article  Google Scholar 

  20. Gurusamy, K. S., Kumar, Y., Sharma, D. & Davidson, B. R. Ischaemic preconditioning for liver transplantation. Cochrane Database of Systematic Reviews, Issue 1.Art. No.: CD006315 http://dx.doi.org/10.1002/14651858.CD006315.pub2.

  21. Lehne, K. & Nobiling, R. Metabolic preconditioning with fructose prior to organ recovery attenuates ischemia–reperfusion injury in the isolated perfused rat liver. Scand. J. Gastroenterol. 48, 218–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Rao, J. et al. All-trans retinoic acid preconditioning protects against liver ischemia/reperfusion injury by inhibiting the nuclear factor κB signaling pathway. J. Surg. Res. 180, e99–e106 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Dulundu, E. et al. Alpha-lipoic acid protects against hepatic ischemia-reperfusion injury in rats. Pharmacology 79, 163–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Song, S. W., Guo, K. J., Shi, R., Cheng, Y. & Liu, Y. F. Pretreatment with calcitonin gene-related peptide attenuates hepatic ischemia/reperfusion injury in rats. Transplant. Proc. 41, 1493–1498 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Batkai, S. et al. Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J. 21, 1788–1800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, Q. et al. Diazoxide suppresses hepatic ischemia/reperfusion injury after mouse liver transplantation by a BCL-2-dependent mechanism. J. Surg. Res. 169, e155–e166 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Schmeding, M., Neumann, U. P., Boas-Knoop, S., Spinelli, A. & Neuhaus, P. Erythropoietin reduces ischemia-reperfusion injury in the rat liver. Eur. Surg. Res. 39, 189–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Bruns, H. et al. Glycine and taurine equally prevent fatty livers from Kupffer cell-dependent injury: an in vivo microscopy study. Microcirculation 18, 205–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Moussavian, M. R. et al. Multidrug donor preconditioning prevents cold liver preservation and reperfusion injury. Langenbecks Arch. Surg. 396, 231–241 (2011).

    Article  PubMed  Google Scholar 

  30. Zaouali, M. A. et al. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J. Pineal. Res. 50, 213–221 (2011).

    CAS  PubMed  Google Scholar 

  31. von Heesen, M. et al. Multidrug donor preconditioning protects steatotic liver grafts against ischemia–reperfusion injury. Am. J. Surg. 203, 168–176 (2012).

    Article  PubMed  Google Scholar 

  32. Donckier, V. et al. Preconditioning of donors with interleukin-10 reduces hepatic ischemia–reperfusion injury after liver transplantation in pigs. Transplantation 75, 902–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Izuishi, K. et al. Cutting edge: high-mobility group Box 1 preconditioning protects against liver ischemia–reperfusion injury. J. Immunol. 176, 7154–7158 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Net, M. et al. Hepatic preconditioning after prolonged warm ischemia by means of S-adenosyl-L-methionine administration in pig liver transplantation from non-heart-beating donors. Transplantation 75, 1970–1977 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Scherer de Fraga, R. et al. S-nitroso-N-acetylcysteine: a promising drug for early ischemia/reperfusion injury in rat liver. Transplant. Proc. 42, 4491–4495 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Huser, N. et al. Graft preconditioning with low-dose tacrolimus (FK506) and nitric oxide inhibitor aminoguanidine (AGH) reduces ischemia/reperfusion injury after liver transplantation in the rat. Arch. Pharm. Res. 32, 215–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Pratschke, S. et al. Tacrolimus preconditioning of rat liver allografts impacts glutathione homeostasis and early reperfusion injury. J. Surg. Res. 176, 309–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Pratschke, S. et al. Protocol TOP-Study (tacrolimus organ perfusion): a prospective randomized multicenter trial to reduce ischemia reperfusion injury in transplantation of marginal liver grafts with an ex vivo tacrolimus perfusion. Transplant. Res. 2, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ozaki, M., Ozasa, H., Fuchinoue, S., Teraoka, S. & Ota, K. Protective effects of glycine and esterified gamma-glutamylcysteine on ischemia/reoxygenation injury of rat liver. Transplantation 58, 753–755 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Bachmann, S., Peng, X. X., Currin, R. T., Thurman, R. G. & Lemasters, J. J. Glycine in Carolina rinse solution reduces reperfusion injury, improves graft function, and increases graft survival after rat liver transplantation. Transplant. Proc. 27, 741–742 (1995).

    CAS  PubMed  Google Scholar 

  41. Schemmer, P. et al. Extended experience with glycine for prevention of reperfusion injury after human liver transplantation. Transplant. Proc. 34, 2307–2309 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Luntz, S. P. et al. HEGPOL: randomized, placebo controlled, multicenter, double-blind clinical trial to investigate hepatoprotective effects of glycine in the postoperative phase of liver transplantation [ISRCTN69350312]. BMC Surg. 5, 18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. von Frankenberg, M. et al. Donor pretreatment with gadolinium chloride improves early graft function and survival after porcine liver transplantation. Transplant. Int. 16, 806–813 (2003).

    Article  CAS  Google Scholar 

  44. Pirenne, J. et al. Biliary strictures after liver transplantation: risk factors and prevention by donor treatment with epoprostenol. Transplant. Proc. 41, 3399–3402 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Farkas, S. et al. Conditioning of liver grafts with prostaglandins improves bile acid transport. Transplant. Proc. 37, 435–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Nagrath, D. et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab. Eng. 11, 274–283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, C. F. et al. Preconditioning donor liver with Nodosin perfusion lessens rat ischemia reperfusion injury via heme oxygenase-1 upregulation. J. Gastroenterol. Hepatol. 27, 832–840 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Sano, T. et al. Hepatic preconditioning using lipopolysaccharide: association with specific negative regulators of the Toll-like receptor 4 signaling pathway. Transplantation 91, 1082–1089 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Kong, R. et al. The strategy of combined ischemia preconditioning and salvianolic acid-B pretreatment to prevent hepatic ischemia-reperfusion injury in rats. Dig. Dis. Sci. 54, 2568–2576 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Sehirli, O. et al. Grape seed extract treatment reduces hepatic ischemia-reperfusion injury in rats. Phytother. Res. 22, 43–48 (2008).

    Article  PubMed  Google Scholar 

  51. Sener, G. et al. Aqueous garlic extract alleviates ischaemia–reperfusion-induced oxidative hepatic injury in rats. J. Pharm. Pharmacol. 57, 145–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Beck-Schimmer, B. et al. A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. Ann. Surg. 248, 909–918 (2008).

    Article  PubMed  Google Scholar 

  53. Minou, A. F., Dzyadzko, A. M., Shcherba, A. E. & Rummo, O. O. The influence of pharmacological preconditioning with sevoflurane on incidence of early allograft dysfunction in liver transplant recipients. Anesthesiol. Res. Pract. 2012, 930487 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Bedirli, N. et al. Hepatic energy metabolism and the differential protective effects of sevoflurane and isoflurane anesthesia in a rat hepatic ischemia–reperfusion injury model. Anesth. Analg. 106, 830–837 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Kang, K. et al. Role of hydrogen sulfide in hepatic ischemia-reperfusion-induced injury in rats. Liver Transplant. 15, 1306–1314 (2009).

    Article  Google Scholar 

  56. Canelo, R., Hakim, N. S. & Ringe, B. Experience with hystidine tryptophan ketoglutarate versus University Wisconsin preservation solutions in transplantation. Int. Surg. 88, 145–151 (2003).

    PubMed  Google Scholar 

  57. Erhard, J. et al. Comparison of histidine-tryptophan-ketoglutarate (HTK) solution versus University of Wisconsin (UW) solution for organ preservation in human liver transplantation. A prospective, randomized study. Transplant. Int. 7, 177–181 (1994).

    CAS  Google Scholar 

  58. Chan, S. C., Liu, C. L., Lo, C. M. & Fan, S. T. Applicability of histidine-tryptophan-ketoglutarate solution in right lobe adult-to-adult live donor liver transplantation. Liver Transplant. 10, 1415–1421 (2004).

    Article  Google Scholar 

  59. Welling, T. H. et al. Biliary complications following liver transplantation in the model for end-stage liver disease era: effect of donor, recipient, and technical factors. Liver Transplant. 14, 73–80 (2008).

    Article  Google Scholar 

  60. Mangus, R. S. et al. Comparison of histidine-tryptophan-ketoglutarate solution and University of Wisconsin solution in extended criteria liver donors. Liver Transplant. 14, 365–373 (2008).

    Article  Google Scholar 

  61. Moench, C. & Otto, G. Ischemic type biliary lesions in histidine-tryptophan-ketoglutarate (HTK) preserved liver grafts. Int. J. Artif. Organs 29, 329–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Stewart, Z. A., Cameron, A. M., Singer, A. L., Montgomery, R. A. & Segev, D. L. Histidine-Tryptophan-Ketoglutarate (HTK) is associated with reduced graft survival in deceased donor livers, especially those donated after cardiac death. Am. J. Transplant. 9, 286–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Mangus, R. S. et al. Comparison of histidine-tryptophan-ketoglutarate solution (HTK) and University of Wisconsin solution (UW) in adult liver transplantation. Liver Transplant. 12, 226–230 (2006).

    Article  Google Scholar 

  64. Testa, G. et al. Histidine-tryptophan-ketoglutarate versus University of Wisconsin solution in living≈donor liver transplantation: results of a prospective study. Liver Transplant. 9, 822–826 (2003).

    Article  Google Scholar 

  65. Belzer, F. O., Ashby, B. S., Gulyassy, P. F. & Powell, M. Successful seventeen-hour preservation and transplantation of human-cadaver kidney. N. Engl. J. Med. 278, 608–610 (1968).

    Article  CAS  PubMed  Google Scholar 

  66. Belzer, F. O., May, R., Berry, M. N. & Lee, J. C. Short term preservation of porcine livers. J. Surg. Res. 10, 55–61 (1970).

    Article  CAS  PubMed  Google Scholar 

  67. Lindbergh, C. A., Perry, V. P., Malinin, T. I. & Mouer, G. H. An apparatus for the pulsating perfusion of whole organs. Cryobiology 3, 252–260 (1966).

    Article  CAS  PubMed  Google Scholar 

  68. Slapak, M., Wigmore, R. A. & MacLean, L. D. Twenty-four hour liver preservation by the use of continuous pulsatile perfusion and hyperbaric oxygen. Transplantation 5 (Suppl.), 1154–1158 (1967).

    Article  Google Scholar 

  69. Starzl, T. E. et al. Extended survival in 3 cases of orthotopic homotransplantation of the human liver. Surgery 63, 549–563 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Brockmann, J. et al. Normothermic perfusion: a new paradigm for organ preservation. Ann. Surg. 250, 1–6 (2009).

    Article  PubMed  Google Scholar 

  71. Guarrera, J. V. et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am. J. Transplant. 10, 372–381 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Berendsen, T. A. et al. A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant. Res. 1, 6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dutkowski, P., Graf, R. & Clavien, P. A. Rescue of the cold preserved rat liver by hypothermic oxygenated machine perfusion. Am. J. Transplant. 6, 903–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Monbaliu, D. & Brassil, J. Machine perfusion of the liver: past, present and future. Curr. Opin. Organ Transplant. 15, 160–166 (2010).

    Article  PubMed  Google Scholar 

  75. Fondevila, C. et al. Superior preservation of DCD livers with continuous normothermic perfusion. Ann. Surg. 254, 1000–1007 (2011).

    Article  PubMed  Google Scholar 

  76. Fondevila, C. et al. Liver transplant using donors after unexpected cardiac death: novel preservation protocol and acceptance criteria. Am. J. Transplant. 7, 1849–1855 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Moers, C. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 360, 7–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Opelz, G. & Dohler, B. Multicenter analysis of kidney preservation. Transplantation 83, 247–253 (2007).

    Article  PubMed  Google Scholar 

  79. Dutkowski, P. et al. First results on end-ischemic hypothermic oxygenated machine perfusion (HOPE) of human liver grafts donated after cardiac arrest [abstract #O-75]. Liver Transplant. 19 (Suppl. 1), S31 (2013).

    Google Scholar 

  80. Dutkowski, P., Furrer, K., Tian, Y., Graf, R. & Clavien, P. A. Novel short-term hypothermic oxygenated perfusion (HOPE) system prevents injury in rat liver graft from non-heart beating donor. Ann. Surg. 244, 968–976 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Minor, T., Akbar, S., Tolba, R. & Dombrowski, F. Cold preservation of fatty liver grafts: prevention of functional and ultrastructural impairments by venous oxygen persufflation. J. Hepatol. 32, 105–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Minor, T., Saad, S., Kotting, M., Nagelschmidt, M. & Paul, A. Endischemic oxygen persufflation to improve viability of marginally preserved donor livers. Transplant. Int. 11 (Suppl. 1), S400–S403 (1998).

    Article  Google Scholar 

  83. Suszynski, T. M. et al. Persufflation (or gaseous oxygen perfusion) as a method of organ preservation. Cryobiology 64, 125–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Minor, T. et al. Oxygen persufflation as adjunct in liver preservation (OPAL): study protocol for a randomized controlled trial. Trials 12, 234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Butler, A. J. et al. Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation 73, 1212–1218 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Op den Dries, S. et al. Successful ex-vivo normothermic machine perfusion and viability testing of discarded human donor livers [abstract #O-91]. Liver Transplant. 19 (Suppl. 1), S34 (2013).

    Google Scholar 

  87. Liu, Q. et al. Release of AST and LFABP from ischemically damaged livers during machine perfusion: a new tool to predict viability and primary non-function. Transplant. Int. 22, 55 (2009).

    Article  CAS  Google Scholar 

  88. van der Plaats, A. et al. The Groningen hypothermic liver perfusion pump: functional evaluation of a new machine perfusion system. Ann. Biomed. Eng. 34, 1924–1934 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Q. et al. Discriminate liver warm ischemic injury during hypothermic machine perfusion by proton magnetic resonance spectroscopy: a study in a porcine model. Transplant. Proc. 41, 3383–3386 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. St Peter, S. D. et al. Beta-galactosidase as a marker of ischemic injury and a mechanism for viability assessment in porcine liver transplantation. Liver Transplant. 8, 21–26 (2002).

    Article  Google Scholar 

  91. Chouker, A. et al. Alpha-gluthathione S-transferase as an early marker of hepatic ischemia/reperfusion injury after liver resection. World J. Surg. 29, 528–534 (2005).

    Article  PubMed  Google Scholar 

  92. Itasaka, H. et al. Significance of hyaluronic acid for evaluation of hepatic endothelial cell damage after cold preservation/reperfusion. J. Surg. Res. 59, 589–595 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Golling, M. et al. Reduced glutathione in the liver as a potential viability marker in non-heart-beating donors. Liver Transplant. 14, 1637–1647 (2008).

    Article  Google Scholar 

  94. Habib, M. M. et al. A comparison of bile composition from heart-beating and non-heart-beating rabbit organ donors during normothermic extracorporeal liver perfusion: experimental evaluation using proton magnetic resonance spectroscopy. Transplant. Proc. 36, 2914–2916 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Lam, C. M., Fan, S. T., Lo, C. M. & Wong, J. Major hepatectomy for hepatocellular carcinoma in patients with an unsatisfactory indocyanine green clearance test. Br. J. Surg. 86, 1012–1017 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Stockmann, M. et al. The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford) 12, 139–146 (2010).

    Article  Google Scholar 

  97. Obara, H. et al. Pretransplant screening and evaluation of liver graft viability using machine perfusion preservation in porcine transplantation. Transplant. Proc. 44, 959–961 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Hara, Y. et al. In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transplant. Int. 24, 1112–1123 (2011).

    Article  Google Scholar 

  99. Pan, G. Z. et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. J. Surg. Res. 178, 935–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Popp, F. C. et al. Safety and feasibility of third-party multipotent adult progenitor cells for immunomodulation therapy after liver transplantation—a phase I study (MISOT-I). J. Transl. Med. 9, 124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bessems, M. et al. Preservation of steatotic livers: a comparison between cold storage and machine perfusion preservation. Liver Transplant. 13, 497–504 (2007).

    Article  Google Scholar 

  102. Lu, S., Yu, Y., Gao, Y., Li, G. Q. & Wang, X. H. Immunological inhibition of transplanted liver allografts by adeno-associated virus vector encoding CTLA4Ig in rats. Hepatobiliary Pancreat. Dis. Int. 7, 258–263 (2008).

    CAS  PubMed  Google Scholar 

  103. Arav, A. & Natan, Y. Directional freezing: a solution to the methodological challenges to preserve large organs. Semin. Reprod. Med. 27, 438–442 (2009).

    Article  PubMed  Google Scholar 

  104. Gavish, Z., Ben-Haim, M. & Arav, A. Cryopreservation of whole murine and porcine livers. Rejuvenation Res. 11, 765–772 (2008).

    Article  PubMed  Google Scholar 

  105. Arav, A. et al. Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum. Reprod. 20, 3554–3559 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Fahy, G. M. et al. Physical and biological aspects of renal vitrification. Organogenesis 5, 167–175 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bismuth, H. & Houssin, D. Reduced-sized orthotopic liver graft in hepatic transplantation in children. Surgery 95, 367–370 (1984).

    CAS  PubMed  Google Scholar 

  108. Bismuth, H. et al. Emergency orthotopic liver transplantation in two patients using one donor liver. Br. J. Surg. 76, 722–724 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Pichlmayr, R., Ringe, B., Gubernatis, G., Hauss, J. & Bunzendahl, H. Transplantation of a donor liver to 2 recipients (splitting transplantation)—a new method in the further development of segmental liver transplantation [German]. Langenbecks Arch. Chir. 373, 127–130 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Azoulay, D. et al. Split-liver transplantation. The Paul Brousse policy. Ann. Surg. 224, 737–746 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Adam, R. et al. Split liver transplantation in Europe: a European Liver Transplant Registry (ELTR) study on evolution and outcomes [abstract #O-142]. Liver Transplant. 19 (Suppl. 1), S40 (2013).

    Google Scholar 

  112. Cauley, R. P. et al. Deceased-donor split-liver transplantation in adult recipients: is the learning curve over? J. Am. Coll. Surg. 217, 672–684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Doyle, M. B. et al. Outcomes with split liver transplantation are equivalent to those with whole organ transplantation. J. Am. Coll. Surg. 217, 102–112 (2013).

    Article  PubMed  Google Scholar 

  114. Lee, W.-C. et al. Feasibility of split liver transplantation for 2 adults in the model of end-stage liver disease era. Ann. Surg. 258, 306–311 (2013).

    Article  PubMed  Google Scholar 

  115. Azoulay, D. et al. Split-liver transplantation for two adult recipients: feasibility and long-term outcomes. Ann. Surg. 233, 565–574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zambelli, M. et al. Full-right-full-left split liver transplantation: the retrospective analysis of an early multicenter experience including graft sharing. Am J Transplant. 12, 2198–2210 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Broering, D. C. et al. Technical refinements and results in full-right full-left splitting of the deceased donor liver. Ann. Surg. 242, 802–812 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee, W. C. et al. Split liver transplantation in adults: preoperative estimation of the weight of right and left hemiliver grafts. Liver Transplant. 17, 93–94 (2011).

    Article  Google Scholar 

  119. Fan, S. T., Lo, C. M., Liu, C. L., Yong, B. H. & Chan, J. K. Split liver transplantation for two adult recipients. Hepatogastroenterology 50, 231–234 (2003).

    PubMed  Google Scholar 

  120. Doyle, M. B. M. et al. Outcomes with split liver transplantation are equivalent to those with whole organ transplantation. J. Am. Coll. Surg. 217, 102–112 (2013).

    Article  PubMed  Google Scholar 

  121. Little, D. M., Farrell, J. G., Cunningham, P. M. & Hickey, D. P. Donor sepsis is not a contraindication to cadaveric organ donation. QJM 90, 641–642 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Lumbreras, C. et al. Clinical significance of donor-unrecognized bacteremia in the outcome of solid-organ transplant recipients. Clin. Infect. Dis. 33, 722–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Freeman, R. B. et al. Outcome of transplantation of organs procured from bacteremic donors. Transplantation 68, 1107–1111 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Goldberg, E., Bishara, J., Lev, S., Singer, P. & Cohen, J. Organ transplantation from a donor colonized with a multidrug-resistant organism: a case report. Transplant Infect. Dis. 14, 296–299 (2012).

    Article  CAS  Google Scholar 

  125. Ariza-Heredia, E. J. et al. Outcomes of transplantation using organs from a donor infected with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. Transplant Infect. Dis. 14, 229–236 (2012).

    Article  CAS  Google Scholar 

  126. Geenen, I. L. et al. Usage and outcomes of deceased donor liver allografts with preprocurement injury from blunt trauma. Liver Transplant. 15, 321–325 (2009).

    Article  Google Scholar 

  127. Mehrabi, A. et al. Transplantation of a severely lacerated liver—a case report with review of the literature. Clin. Transplant. 23, 321–328 (2009).

    Article  PubMed  Google Scholar 

  128. Tucker, O. N., Girlanda, R., Rela, M., Heaton, N. D. & Muiesan, P. Successful outcome following transplantation of an injured liver from a nonheart beating donor. Transplant. Int. 18, 724–726 (2005).

    Article  Google Scholar 

  129. Avolio, A. W. et al. Successful transplantation of an injured liver. Transplant. Proc. 32, 131–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Di Benedetto, F. et al. Successful liver transplantation using a severely injured graft. J. Trauma 63, 217–220 (2007).

    Article  PubMed  Google Scholar 

  131. World Medical Association. The World Medical Association Resolution on Euthanasia. World Medical Association [online], (2013).

  132. Ysebaert, D. et al. Organ procurement after euthanasia: Belgian experience. Transplant. Proc. 41, 585–586 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Detry, O. et al. Organ donation after physician-assisted death. Transplant. Int. 21, 915 (2008).

    Article  Google Scholar 

  134. Opelz, G. & Terasaki, P. I. Advantage of cold storage over machine perfusion for preservation of cadaver kidneys. Transplantation 33, 64–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  135. Moers, C., Pirenne, J., Paul, A. & Ploeg, R. J. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 366, 770–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Watson, C. J. et al. Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. Am. J. Transplant. 10, 1991–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Bond, M. et al. The effectiveness and cost-effectiveness of methods of storing donated kidneys from deceased donors: a systematic review and economic model. Health Technol. Assess 13, 1–156 (2009).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.N. and A.P. contributed to all aspects of this manuscript. P.N. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Andreas Pascher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebrig, M., Neuhaus, P. & Pascher, A. Advances in the management of the explanted donor liver. Nat Rev Gastroenterol Hepatol 11, 489–496 (2014). https://doi.org/10.1038/nrgastro.2014.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing