Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cirrhotic cardiomyopathy: pathogenesis and clinical relevance

Key Points

  • Cirrhotic cardiomyopathy is an abnormal cardiac function at rest and an impaired contractile responsiveness to stress in patients with cirrhosis

  • An altered diastolic relaxation detected by reduced E:A ratio is of prognostic value in patients with cirrhotic cardiomyopathy

  • Electrophysiological abnormalities with prolonged QT interval are present in the condition

  • The prevalence of cirrhotic cardiomyopathy is 50% in individuals with cirrhosis

  • Cirrhotic cardiomyopathy is independent of the aetiology of cirrhosis and is involved in development of complications such as hepatic nephropathy

  • Treatment is nonspecific and supportive; cirrhotic cardiomyopathy seems to resolve after liver transplantation

Abstract

Cirrhosis is known to cause alterations in the systemic haemodynamic system. Cirrhotic cardiomyopathy designates a cardiac dysfunction that includes impaired cardiac contractility with systolic and diastolic dysfunction, as well as electromechanical abnormalities in the absence of other known causes of cardiac disease. This condition is primarily revealed by inducing physical or pharmacological stress, but echocardiography is excellent at revealing diastolic dysfunction and might also be used to detect systolic dysfunction at rest. Furthermore, measurement of circulating levels of cardiac biomarkers could improve the diagnostic assessm+ent. Cirrhotic cardiomyopathy contributes to various complications in cirrhosis, especially as an important factor in the development of hepatic nephropathy. Additionally, cirrhotic cardiomyopathy seems to be associated with the development of heart failure in relation to invasive procedures such as shunt insertion and liver transplantation. Current pharmacological treatment is nonspecific and directed towards left ventricular failure, and liver transplantation is currently the only proven treatment with specific effect on cirrhotic cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of cardiac dysfunction and related complications in patients with cirrhosis.
Figure 2: Echocardiography to assess diastolic dysfunction in cirrhotic cardiomyopathy.
Figure 3: 3D echocardiography.

Similar content being viewed by others

References

  1. Kowalsky, H. J. & Belmann, W. H. The cardiac output at rest in Laennec's cirrhosis. J. Clin. Invest. 32, 1025–1033 (1953).

    Article  Google Scholar 

  2. Møller, S. & Henriksen, J. H. Cardiovascular complications of cirrhosis. Gut 57, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Møller, S. & Henriksen, J. H. in Ascites and Renal Dysfunction in Liver Disease (eds Gines, P., Arroyo, V., Rodes, J. & Schrier, R. W.), 139–155 (Wiley–Blackwell, 2005).

    Google Scholar 

  4. Møller, S., Iversen, J. S., Henriksen, J. H. & Bendtsen, F. Reduced baroreflex sensitivity in alcoholic cirrhosis: relations to hemodynamics and humoral systems. Am. J. Physiol. Heart Circ. Physiol. 292, H2966–H2972 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Fouad, T. R., Abdel-Razek, W. M., Burak, K. W., Bain, V. G. & Lee, S. S. Prediction of cardiac complications after liver transplantation. Transplantation 87, 763–770 (2009).

    Article  PubMed  Google Scholar 

  6. Myers, R. P. & Lee, S. S. Cirrhotic cardiomyopathy and liver transplantation. Liver Transpl. 4 (Suppl. 1), S44–S52 (2000).

    Article  Google Scholar 

  7. Ortiz-Olvera, N. X. et al. Anatomical cardiac alterations in liver cirrhosis: an autopsy study. Ann. Hepatol. 10, 321–326 (2011).

    Article  PubMed  Google Scholar 

  8. Liu, H. & Lee, S. S. Acute-on-chronic liver failure: the heart and systemic hemodynamics. Curr. Opin. Crit. Care 17, 190–194 (2011).

    Article  PubMed  Google Scholar 

  9. Møller, S. & Henriksen, J. H. Cirrhotic cardiomyopathy. J. Hepatol. 53, 179–190 (2010).

    Article  PubMed  Google Scholar 

  10. Timoh, T., Protano, M. A., Wagman, G., Bloom, M. & Vittorio, T. J. A perspective on cirrhotic cardiomyopathy. Transplant. Proc. 43, 1649–1653 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Kazankov, K. et al. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging. Liver Int. 31, 534–540 (2011).

    Article  PubMed  Google Scholar 

  12. Nazar, A. et al. Left ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J. Hepatol. 58, 51–57 (2013).

    Article  PubMed  Google Scholar 

  13. Cazzaniga, M. et al. Diastolic dysfunction is associated with poor survival in patients with cirrhosis with transjugular intrahepatic portosystemic shunt. Gut 56, 869–875 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jones, D. E. et al. Impaired cardiovascular function in primary biliary cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G764–G773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saner, F. H. et al. High brain-natriuretic peptide level predicts cirrhotic cardiomyopathy in liver transplant patients. Transpl. Int. 24, 425–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Krag, A., Bendtsen, F., Henriksen, J. H. & Møller, S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut 59, 105–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-del-Arbol, L. et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 42, 439–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rabie, R. N., Cazzaniga, M., Salerno, F. & Wong, F. The use of E/A ratio as a predictor of outcome in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt. Am. J. Gastroenterol. 104, 2458–2466 (2009).

    Article  PubMed  Google Scholar 

  19. Møller, S., Hobolth, L., Winkler, C., Bendtsen, F. & Christensen, E. Determinants of the hyperdynamic circulation and central hypovolaemia in cirrhosis. Gut 60, 1254–1259 (2011).

    Article  PubMed  Google Scholar 

  20. Laleman, W., Landeghem, L., Wilmer, A., Fevery, J. & Nevens, F. Portal hypertension: from pathophysiology to clinical practice. Liver Int. 25, 1079–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Martin, P. Y., Gines, P. & Schrier, R. W. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N. Engl. J. Med. 339, 533–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sola, E. et al. Plasma copeptin levels are increased in cirrhosis and correlate with hyponatremia and circulatory dysfunction. J. Hepatol. 58 (Suppl. 1), 246–247 (2013).

    Google Scholar 

  23. Moreno, J. P. et al. Plasma copeptin, a possible prognostic marker in cirrhosis. Liver Int. 33, 843–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lagi, A. et al. Impaired sympathetic regulation of cerebral blood flow in patients with cirrhosis of the liver. Clin. Sci. (Lond.) 103, 43–51 (2002).

    Article  Google Scholar 

  25. Møller, S., Krag, A., Madsen, J. L., Henriksen, J. H. & Bendtsen, F. Pulmonary dysfunction and hepatopulmonary syndrome in cirrhosis and portal hypertension. Liver Int. 29, 1528–1537 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Møller, S. & Krag, A. in Hyponatremia and Hepatorenal Syndrome: Progress in Treatment (ed. Gerbes, A.) 102–111 (Karger, Basel, 2011).

    Google Scholar 

  27. Arroyo, V., Terra, C. & Gines, P. Advances in the pathogenesis and treatment of type-1 and type-2 hepatorenal syndrome. J. Hepatol. 46, 935–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Arroyo, V. et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 23, 164–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. D'Amico, G., Morabito, A., Pagliaro, L. & Marubini, E. Survival and prognostic indicators in compensated and decompensated cirrhosis. Dig. Dis. Sci. 31, 468–475 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Gines, P. et al. Compensated cirrhosis: natural history and prognostic factors. Hepatology 7, 122–128 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Tsao, G. et al. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology 5, 419–424 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Bismuth, M., Funakoshi, N., Cadranel, J. F. & Blanc, P. Hepatic encephalopathy: from pathophysiology to therapeutic management. Eur. J. Gastroenterol. Hepatol. 23, 8–22 (2011).

    Article  PubMed  Google Scholar 

  33. Fallon, M. B. & Abrams, G. A. Pulmonary dysfunction in chronic liver disease. Hepatology 32, 859–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Roisin, R., Agusti, A. G. & Roca, J. The hepatopulmonary syndrome: new name, old complexities. Thorax 47, 897–902 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerbes, A. L., Remien, J., Jungst, D., Sauerbruch, T. & Paumgartner, G. Evidence for down-regulation of β-2-adrenoceptors in cirrhotic patients with severe ascites. Lancet 1, 1409–1411 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, S. S. et al. Desensitization of myocardial β-adrenergic receptors in cirrhotic rats. Hepatology 12, 481–485 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Ward, C. A., Liu, H. & Lee, S. S. Altered cellular calcium regulatory systems in a rat model of cirrhotic cardiomyopathy. Gastroenterology 121, 1209–1218 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Bortoluzzi, A. et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. Hepatology 57, 266–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, L., Liu, H., Nam, S. W. & Lee, S. S. Protective effects of erythropoietin on cirrhotic cardiomyopathy in rats. Dig. Liver Dis. 44, 1012–1017 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. van Obbergh, L., Vallieres, Y. & Blaise, G. Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. J. Hepatol. 24, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, H. et al. Cardiac thick-filament sturctural and functional changes contribute to cirrhotic cardiomyopathy in rats. J. Hepatol. 58 (Suppl. 1), 240 (2013).

    Google Scholar 

  42. Finucci, G. et al. Left ventricular diastolic function in liver cirrhosis. Scand. J. Gastroenterol. 31, 279–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Pozzi, M. et al. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology 26, 1131–1137 (1997).

    CAS  PubMed  Google Scholar 

  44. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22, 107–133 (2009).

    Article  PubMed  Google Scholar 

  45. Kasner, M. et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116, 637–647 (2007).

    Article  PubMed  Google Scholar 

  46. Oki, T. et al. Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am. J. Cardiol. 79, 921–928 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Ommen, S. R. et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation 102, 1788–1794 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Mor-Avi, V. et al. Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC Cardiovasc. Imaging 5, 769–777 (2012).

    Article  PubMed  Google Scholar 

  49. Poulsen, S. H., Andersen, N. H., Heickendorff, L. & Mogensen, C. E. Relation between plasma amino-terminal propeptide of procollagen type III and left ventricular longitudinal strain in essential hypertension. Heart 91, 624–629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ersboll, M. et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J. Am. Coll. Cardiol. 61, 2365–2373 (2013).

    Article  PubMed  Google Scholar 

  51. Park, T. H. et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability. Am. J. Physiol. Heart Circ. Physiol. 290, H724–H731 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Lima, J. A. & Desai, M. Y. Cardiovascular magnetic resonance imaging: current and emerging applications. J. Am. Coll. Cardiol. 44, 1164–1171 (2004).

    Article  PubMed  Google Scholar 

  53. Lawton, J. S. et al. Magnetic resonance imaging detects significant sex differences in human myocardial strain. Biomed. Eng. Online 10, 76 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zagrosek, A. et al. Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc. Imaging 2, 131–138 (2009).

    Article  PubMed  Google Scholar 

  55. Iles, L. et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52, 1574–1580 (2008).

    Article  PubMed  Google Scholar 

  56. Desai, M. S. et al. Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology 51, 2097–2107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kovacs, A., Schepke, M., Heller, J., Schild, H. H. & Flacke, S. Short-term effects of transjugular intrahepatic shunt on cardiac function assessed by cardiac MRI: preliminary results. Cardiovasc. Intervent. Radiol. 33, 290–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Krag, A., Bendtsen, F., Kjær, A., Leth-Petersen, C. & Møller, S. Cardiac function studied by dobutamin stress MRI in patients with mild cirrhosis. J. Hepatol. 50, S277 (2009).

    Article  Google Scholar 

  59. Lossnitzer, D. et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in patients with cirrhosis. J. Cardiovasc. Magn. Reson. 12, 47 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Møller, S., Søndergaard, L., Møgelvang, J., Henriksen, O. & Henriksen, J. H. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis. Hepatology 22, 472–478 (1995).

    PubMed  Google Scholar 

  61. Wong, F. Cirrhotic cardiomyopathy. Hepatol. Int. 3, 294–304 (2009).

    Article  PubMed  Google Scholar 

  62. Sampaio, F. et al. Systolic and diastolic dysfunction in cirrhosis: a tissue-Doppler and speckle tracking echocardiography study. Liver Int. 33, 1158–1165 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Henriksen, J. H. et al. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut 52, 1511–1517 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruffa, L., Calicchia, A., Pergolini, A. et al. Cirrhotic cardiomyopathy evaluated with tissue Doppler imaging is not associated with the severity of liver dysfunction in liver cirrhosis. Gut 60 (Suppl. 3), 241 (2011).

    Google Scholar 

  65. Wong, F., Villamil, A., Merli, M. et al. Prevalence of diastolic dysfunction in cirrhosis and its clinical significance. Hepatology 54, 475A (2011).

    Article  CAS  Google Scholar 

  66. Møller, S. & Henriksen, J. H. Cardiovascular dysfunction in cirrhosis. Pathophysiological evidence of a cirrhotic cardiomyopathy. Scand. J. Gastroenterol. 36, 785–794 (2001).

    Article  PubMed  Google Scholar 

  67. Wong, F. et al. The cardiac response to exercise in cirrhosis. Gut 49, 268–275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krag, A., Bendtsen, F., Mortensen, C., Henriksen, J. H. & Møller, S. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis. Eur. J. Gastroenterol. Hepatol. 22, 1085–1092 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Limas, C. J., Guiha, N. H., Lekagul, O. & Cohn, J. N. Impaired left ventricular function in alcoholic cirrhosis with ascites. Ineffectiveness of ouabain. Circulation 49, 754–760 (1974).

    Article  CAS  PubMed  Google Scholar 

  70. Pouriki, S. et al. Left ventricle enlargement and increased systolic velocity in the mitral valve are indirect markers of the hepatopulmonary syndrome. Liver Int. 31, 1388–1394 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, H., Gaskari, S. A. & Lee, S. S. Cardiac and vascular changes in cirrhosis: pathogenic mechanisms. World J. Gastroenterol. 12, 837–842 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De, B. K. et al. Cardiac dysfunction in portal hypertension among patients with cirrhosis and non-cirrhotic portal fibrosis. J. Hepatol. 39, 315–319 (2003).

    Article  PubMed  Google Scholar 

  73. Raizada, V., Skipper, B., Luo, W. & Griffith, J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J. Investig. Med. 55, 341–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Wong, F., Liu, P., Lilly, L., Bomzon, A. & Blendis, L. Role of cardiac structural and functional abnormalities in the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin. Sci. (Lond.) 97, 259–267 (1999).

    Article  CAS  Google Scholar 

  75. Holt, E. et al. Diastolic dysfunction defined by E/A ratio <1 on 2-D echo is an independent predictor of liver transplantation or death in patients with cirrhosis. J. Hepatol. 54 (Suppl. 1), 245–246 (2011).

    Article  Google Scholar 

  76. Ruiz-del-Arbol, L. et al. Diastolic dysfunction is a predictor of poor outcomes in patients with cirrhosis, portal hypertension and a normal creatinine. Hepatology http://dx.doi.org/10.1002/hep.26509.

  77. Torregrosa, M. et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J. Hepatol. 42, 68–74 (2005).

    Article  PubMed  Google Scholar 

  78. McDonagh, T. A. et al. Biochemical detection of left-ventricular systolic dysfunction. Lancet 351, 9–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Levin, E. R., Gardner, D. G. & Samson, W. K. Natriuretic peptides. N. Engl. J. Med. 339, 321–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Nageh, T., Sherwood, R. A., Harris, B. M., Byrne, J. A. & Thomas, M. R. Cardiac troponin T and I and creatine kinase-MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int. J. Cardiol. 92, 285–293 (2003).

    Article  PubMed  Google Scholar 

  81. Pateron, D. et al. Elevated circulating cardiac troponin I in patients with cirrhosis. Hepatology 29, 640–643 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Wiese, S. et al. Markers of inflammation and cardiac dysfunction are associated with the hemodynamic derangement and prognosis in patients with cirrhosis. Hepatology 56 (Suppl. 1), 162A (2012).

    Google Scholar 

  83. Boomsma, F. & van den Meiracker, A. H. Plasma A- and B-type natriuretic peptides: physiology, methodology and clinical use. Cardiovasc. Res. 51, 442–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Gottlieb, S. S., Kukin, M. L., Ahern, D. & Packer, M. Prognostic importance of atrial natriuretic peptide in patients with chronic heart failure. J. Am. Coll. Cardiol. 13, 1534–1539 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Potter, L. R., Yoder, A. R., Flora, D. R., Antos, L. K. & Dickey, D. M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 191, 341–366 (2009).

    Article  CAS  Google Scholar 

  86. Masson, S. et al. The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSI-HF) trial. Eur. J. Heart Fail. 12, 338–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. McKie, P. M. et al. Predictive utility of atrial, N.-terminal pro-atrial, and N.-terminal pro-B-type natriuretic peptides for mortality and cardiovascular events in the general community: a 9-year follow-up study. Mayo Clin. Proc. 86, 1154–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller, W. L. et al. Serial measurements of midregion proANP and copeptin in ambulatory patients with heart failure: incremental prognostic value of novel biomarkers in heart failure. Heart 98, 389–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ates, F. et al. The relationship of heart rate variability with severity and prognosis of cirrhosis. Dig. Dis. Sci. 51, 1614–1618 (2006).

    Article  PubMed  Google Scholar 

  90. Newton, J. L., Allen, J., Kerr, S. & Jones, D. E. Reduced heart rate variability and baroreflex sensitivity in primary biliary cirrhosis. Liver Int. 26, 197–202 (2006).

    Article  PubMed  Google Scholar 

  91. Ruiz-del-Arbol, L. et al. Paracentesis-induced circulatory dysfunction: mechanism and effect on hepatic hemodynamics in cirrhosis. Gastroenterology 113, 579–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Ruiz-del-Arbol, L. et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 38, 1210–1218 (2003).

    Article  PubMed  Google Scholar 

  93. Song, J. G., Kim, Y. K., Shin, W. J. & Hwang, G. S. Changes in cardiovagal baroreflex sensitivity are related to increased ventricular mass in patients with liver cirrhosis. Circ. J. 76, 2807–2813 (2012).

    Article  PubMed  Google Scholar 

  94. Møller, S. et al. Cardiac sympathetic imaging with mIBG in cirrhosis and portal hypertension: relation to autonomic and cardiac function. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1228–G1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Bernardi, M., Maggioli, C., Dibra, V. & Zaccherini, G. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert. Rev. Gastroenterol. Hepatol. 6, 57–66 (2012).

    Article  PubMed  Google Scholar 

  96. Lazzeri, C. et al. Autonomic regulation of heart rate and QT interval in nonalcoholic cirrhosis with ascites. Digestion 58, 580–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Bernardi, M. et al. Reduced cardiovascular responsiveness to exercise-induced sympathoadrenergic stimulation in patients with cirrhosis. J. Hepatol. 12, 207–216 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Henriksen, J. H., Fuglsang, S., Bendtsen, F., Christensen, E. & Møller, S. Dyssynchronous electrical and mechanical systole in patients with cirrhosis. J. Hepatol. 36, 513–520 (2002).

    Article  PubMed  Google Scholar 

  99. Henriksen, J. H. et al. QT interval (QTC) in patients with cirrhosis: relation to vasoactive peptides and heart rate. Scand. J. Clin. Lab. Invest. 67, 643–653 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Genovesi, S. et al. QT interval prolongation and decreased heart rate variability in cirrhotic patients: relevance of hepatic venous pressure gradient and serum calcium. Clin. Sci. (Lond.) 116, 851–859 (2009).

    Article  CAS  Google Scholar 

  101. Trevisani, F. et al. QT interval in patients with non-cirrhotic portal hypertension and in cirrhotic patients treated with transjugular intrahepatic porto-systemic shunt. J. Hepatol. 38, 461–467 (2003).

    Article  PubMed  Google Scholar 

  102. Day, C. P., James, O. F., Butler, T. J. & Campbell, R. W. QT prolongation and sudden cardiac death in patients with alcoholic liver disease. Lancet 341, 1423–1428 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Bernardi, M. et al. QT interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology 27, 28–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Bal, J. S. & Thuluvath, P. J. Prolongation of QTc interval: relationship with etiology and severity of liver disease, mortality and liver transplantation. Liver Int. 23, 243–248 (2003).

    Article  PubMed  Google Scholar 

  105. Arroyo, V., Guevara, M. & Gines, P. Hepatorenal syndrome in cirrhosis: pathogenesis and treatment. Gastroenterology 122, 1658–1676 (2002).

    Article  PubMed  Google Scholar 

  106. Krag, A., Bendtsen, F., Burroughs, A. K. & Møller, S. The cardiorenal link in advanced cirrhosis. Med. Hypotheses 79, 53–55 (2012).

    Article  PubMed  Google Scholar 

  107. Gines, P. et al. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin for refractory ascites in cirrhosis. Gastroenterology 123, 1839–1847 (2002).

    Article  PubMed  Google Scholar 

  108. Merli, M. et al. Modifications of cardiac function in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt (TIPS). Am. J. Gastroenterol. 97, 142–148 (2002).

    Article  PubMed  Google Scholar 

  109. Ripoll, C. et al. Cardiac dysfunction during liver transplantation: incidence and preoperative predictors. Transplantation 85, 1766–1772 (2008).

    Article  PubMed  Google Scholar 

  110. Therapondos, G. et al. Cardiac function after orthotopic liver transplantation and the effects of immunosuppression: a prospective randomized trial comparing cyclosporin (Neoral) and tacrolimus. Liver Transpl. 8, 690–700 (2002).

    Article  PubMed  Google Scholar 

  111. Adigun, A. Q. et al. Effect of cirrhosis and liver transplantation on the gender difference in QT interval. Am. J. Cardiol. 95, 691–694 (2005).

    Article  PubMed  Google Scholar 

  112. Henriksen, J. H., Bendtsen, F., Hansen, E. F. & Møller, S. Acute non-selective β-adrenergic blockade reduces prolonged frequency-adjusted QT interval (QTc) in patients with cirrhosis. J. Hepatol. 40, 239–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Zambruni, A. et al. Effect of chronic β-blockade on QT interval in patients with liver cirrhosis. J. Hepatol. 48, 415–421 (2008).

    Article  PubMed  Google Scholar 

  114. Serste, T. et al. Deleterious effects of β-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology 52, 1017–1022 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Pozzi, M. et al. Cardiac, neuroadrenergic, and portal hemodynamic effects of prolonged aldosterone blockade in postviral child A cirrhosis. Am. J. Gastroenterol. 100, 1110–1116 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Møller has received support from the NovoNordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Søren Møller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, S., Hove, J., Bendtsen, F. et al. Cirrhotic cardiomyopathy: pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 11, 177–186 (2014). https://doi.org/10.1038/nrgastro.2013.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing