Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug–drug interactions during antiviral therapy for chronic hepatitis C

Abstract

The emergence of direct-acting antiviral agents (DAAs) for HCV infection represents a major advance in treatment. The NS3 protease inhibitors, boceprevir and telaprevir, were the first DAAs to receive regulatory approval. When combined with PEG-IFN and ribavirin, these agents increase rates of sustained virologic response in HCV genotype 1 to 70%. However, this treatment regimen is associated with several toxicities. In addition, both boceprevir and telaprevir are substrates for and inhibitors of the drug transporter P-glycoprotein and the cytochrome P450 enzyme 3A4 and are, therefore, prone to clinically relevant drug interactions. Several new DAAs for HCV are in late stages of clinical development and are likely to be approved in the near future. These include the protease inhibitors, simeprevir and faldaprevir, the NS5A inhibitor, daclatasvir, and the nucleotide polymerase inhibitor, sofosbuvir. Herein, we review the clinical pharmacology and drug interactions of boceprevir, telaprevir and these investigational DAAs. Although boceprevir and telaprevir are involved in many interactions, these interactions are manageable if health-care providers proactively identify and adjust treatments. Emerging DAAs seem to have a reduced potential for drug interactions, which will facilitate their use in the treatment of HCV.

Key Points

  • Direct-acting antiviral agents (DAAs) represent a major advance in the treatment of chronic HCV infection

  • Boceprevir and telaprevir, the first DAAs to receive regulatory approval, are involved in many clinically important drug–drug interactions

  • Providers must proactively screen for potential drug–drug interactions with boceprevir and telaprevir before and during treatment and adjust therapies as needed

  • Many investigational DAAs have fewer, but are not devoid of, drug–drug interactions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of a therapeutic range.
Figure 2: An algorithm for screening, adjusting and monitoring for potential drug interactions with DAAs.
Figure 3: Protocol for using triple therapy in patients with recurrent HCV after liver transplantation.

Similar content being viewed by others

References

  1. WHO. Hepatitis C Fact Sheet. WHO [online], (2013).

  2. Tang, H. & Grise, H. Cellular and molecular biology of HCV infection and hepatitis. Clin. Sci. (Lond.) 117, 49–65 (2012).

    Article  CAS  Google Scholar 

  3. Zein, N. N. et al. Hepatitis C virus genotypes in the United States: epidemiology, pathogenicity, and response to interferon therapy. Collaborative Study Group. Ann. Intern. Med. 125, 634–639 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bacon, B. R. et al. Boceprevir for previously treated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1207–1217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacobson, I. M. et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 364, 2405–2416 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Poordad, F. et al. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1195–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeuzem, S. et al. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 364, 2417–2428 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Bronowicki, J. P. et al. Sustained virologic response (SVR) in prior peginterferon/ribavirin (PR) treatment failures after retreatment with boceprevir (BOC) + PR: the PROVIDE study interim results [abstract 11]. J. Hepatol. 56 (Suppl. 2) S6 (2012).

    Article  Google Scholar 

  9. Sherman, K. E. et al. Response-guided telaprevir combination treatment for hepatitis C virus infection. N. Engl. J. Med. 365, 1014–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Merck. Victrelis © (boceprevir) prescribing information. Merck [online], (2013).

  11. Vertex. Incivek (telaprevir) prescribing information. Vertex [online], (2013).

  12. Fried, M. W. et al. TMC435 in combination with peginterferon and ribavirin in treatment naive hcv genotype 1 patients: final analysis of the pillar phase IIb study [abstract LB-5]. Hepatology 54 (Suppl. 1), 1429A (2011).

    Google Scholar 

  13. Hezode, C. et al. BMS-790052, a NS5A replication complex inhibitor, combined with peginterferon alfa-2a and ribavirin in treatment-naive HCV genotype 1 or 4 patients: phase 2b AI444010 study interim week 12 results [abstract 227]. Hepatology 54 (Suppl. 1), 474A (2011).

    Google Scholar 

  14. Sulkowski, M. S. et al. Faldaprevir combined with peginterferon alfa-2a and ribavirin in treatment-naive patients with chronic genotype-1 HCV: SILEN-C1 trial. Hepatology 57, 2143–2154 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Kowdley, K. V. et al. Sofosbuvir with pegylated interferon alfa-2a and ribavirin for treatment-naive patients with hepatitis C genotype-1 infection (ATOMIC): an open-label, randomised, multicentre phase 2 trial. Lancet. 381, 2100–2107 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sulkowski, M. S. et al. All-ORAL Combination of DCV + SOF ± RBV in treatment-naïve patients with HCV GT 1, 2 or 3 [abstract LB2]. Presented at the 63rd Annual Meeting of the American Association for the Study of Liver Diseases (2012).

  17. Everson, G. T. et al. An interferon-free, ribavirin-free 12-week regimen of daclatasvir (DCV), asunaprevir (ASV), and BMS-791325 yielded SVR4 of 94% in treatment-naïve patients with genotype (GT) 1 chronic hepatitis C virus (HCV) infection [abstract LB3]. Presented at the 63rd Annual Meeting of the American Association for the Study of Liver Diseases (2012).

  18. Kowdley, K. V. et al. A 12-week interferon-free treatment regimen with ABT-450/r, ABT-267, ABT-333 and ribavirin achieves SVR12 rates (OBSERVED Data) of 99% in treatment-naïve patients and 93% in prior null responders with HCV genotype 1 infection [abstract LB1]. Presented at the 63rd Annual Meeting of the American Association for the Study of Liver Diseases (2012).

  19. Lok, A. S. et al. Sustained virologic response in chronic HCV genotype (GT) 1-infected null responders with combination of daclatasvir (DCV; NS5A Inhibitor) and asunaprevir (ASV; NS3 Inhibitor) with or without peginterferon alfa-2a/ribavirin (PEG/RBV) [abstract 79]. Hepatology 56 (Suppl. 6), 230A (2012).

    Google Scholar 

  20. Feld, J. J. et al. Up to 100% SVR4 rates with ritonavir-boosted danoprevir (DNVr), mericitabine (MCB), and ribavirin (R) ± peginterferon alfa-2a (40KD) (P) in HCV genotype 1-infected partial and null responders: results from the MATTERHORN study [abstract 81]. Hepatology 56 (Suppl. 6), 231A (2012).

    Google Scholar 

  21. Thompson, A. J. et al. Six weeks of a NS5A Inhibitor (GS-5885), protease inhibitor (GS-9451) plus peginterferon/ribavirin (PR) achieves high SVR4 rates in genotype 1 IL28B CC treatment naive HCV patients: interim results of a prospective, randomized trial [abstract 759]. Hepatology 56 (Suppl. 6), 556A (2012).

    Google Scholar 

  22. Flockhart, D. A., Tanus-Santos, J. E. Implications of cytochrome P450 interactions when prescribing medication for hypertension. Arch. Intern. Med. 162, 405–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Burger, D. et al. Clinical management of drug–drug interactions in HCV therapy: challenges and solutions. J. Hepatol. 58, 792–800 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Herold, C. et al. Quantitative testing of liver function in relation to fibrosis in patients with chronic hepatitis B and C. Liver 21, 260–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Frye, R. F. et al. Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin. Pharmacol. Ther. 80, 235–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Helmke, S. M., DeSanto, J., Herman, A., Lauriski, S. & Everson, G. T. Alteration of the portal circulation across the entire spectrum of fibrosis in patients with chronic Hepatitis C as measured by dual cholate clearances [abstract 1005]. Hepatology 56 (Suppl. 1), 678A (2012).

    Google Scholar 

  27. Ciesek, S., von Hahn, T. & Manns, M. P. Second-wave protease inhibitors: choosing an heir. Clin. Liver Dis. 15, 597–609 (2011).

    Article  PubMed  Google Scholar 

  28. Hull, M. W. & Montaner, J. S. Ritonavir-boosted protease inhibitors in HIV therapy. Ann. Med. 43, 375–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Deutsch, M. & Papatheodoridis, G. V. Danoprevir, a small-molecule NS3/4A protease inhibitor for the potential oral treatment of HCV infection. Curr. Opin. Investig. Drugs 11, 951–963 (2010).

    CAS  PubMed  Google Scholar 

  30. Lawitz, E. et al. A phase 2a trial of 12-week interferon-free therapy with two direct-acting antivirals (ABT-450/r, ABT-072) and ribavirin in IL28B C/C patients with chronic hepatitis C genotype 1. J. Hepatol. 59, 18–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. de Kanter, C. T. et al. Lack of a clinically significant drug-drug interaction in healthy volunteers between the HCV protease inhibitor boceprevir and the proton pump inhibitor omeprazole. J. Antimicrob. Chemother. 68, 1415–1422 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Merck. Boceprevir Clinical Pharmacology and Biopharmaceutics Review. FDA [online], (2013).

  33. Treitel, M. et al. Single-dose pharmacokinetics of boceprevir in subjects with impaired hepatic or renal function. Clin. Pharmacokinet. 51, 619–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Buti, M. et al. OPTIMIZE Trial: Noninferiority of twice-daily telaprevir versus administration every 8 hours in treatment-naive, genotype 1 HCV-infected patients [abstract LB-8]. Presented at the 63rd Annual Meeting of the American Association for the Study of Liver Diseases (2012).

  35. Kunze, A., Huwyler, J., Camenisch, G. & Gutmann, H. Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters. Biochem. Pharmacol. 84, 1096–1102 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Adiwijaya, B. et al. Effect of mild and moderate hepatic impairment on telaprevir pharmacokinetics [abstract PK1]. Reviews in Antiviral Therapy & Infectious Diseases 6, 3 (2011).

    Google Scholar 

  37. Sekar, V. et al. TMC435 and Drug Interactions: Evaluation of metabolic interactions for TMC435 via cytochrome P450 (CYP) enzymes in healthy volunteers [abstract 1076]. J. Hepatol. 52 (Suppl. 1), S416 (2010).

    Google Scholar 

  38. Huisman, M. T. et al. In vitro studies investigating the mechanism of interaction between TMC435 and hepatic transporters [abstract 278]. Hepatology 52 (Suppl. 1), 461A (2010).

    Google Scholar 

  39. Sekar, V. et al. Pharmacokinetics of TMC435 in subjects with moderate hepatic impairment [abstract 472]. J. Hepatol. 54 (Suppl. 1), S193 (2011).

    Article  Google Scholar 

  40. Sabo, J. P. et al. Cytochrome P450 (CYP) interactions with the HCV protease inhibitor faldaprevir (BI 201335) in healthy volunteers [abstract A-1248]. Presented at the 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy (2012).

  41. Sane, R. et al. Mechanism of isolated unconjugated hyperbilirubinemia induced by the HCV NS3/4A protease inhibitor BI 201335 [abstract 1236]. J. Hepatol. 54 (Suppl. 1), S488 (2011).

    Article  Google Scholar 

  42. Kort, J. Clinical pharmacology update on the direct acting antivirals faldaprevir and BI 207127. Presented at the 14th International Workshop on Clinical Pharmacology of HIV Therapy (2013).

  43. Gish, R. G. & Meanwell, N. A. The NS5A replication complex inhibitors: difference makers? Clin. Liver Dis. 15, 627–639 (2011).

    Article  PubMed  Google Scholar 

  44. Bifano, M. et al. BMS-790052 has no clinically significant effect on the pharmacokinetics ofa combined oral contraceptive containing ethinyl estradiol and norgestimate in healthy female subjects [abstract 1340]. Hepatology 54 (Suppl. 1), 991A–992A (2011).

    Google Scholar 

  45. Nettles, R. E. et al. Multiple ascending dose study of BMS-790052, a nonstructural protein 5A replication complex inhibitor, in patients infected with hepatitis C virus genotype 1. Hepatology 54, 1956–1965 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Bertz, R. Bristol Myers Squibb HCV full development portfolio overview. Presented at the 14th International Workshop on Clinical Pharmacology of HIV Therapy (2013).

  47. Bifano, M. et al. Single-dose pharmacokinetics of daclatasvir in subjects with hepatic impairment compared with healthy subjects [abstract 1362]. Hepatology 54 (Suppl. 1), 1004A (2011).

    Google Scholar 

  48. Powdrill, M. H., Bernatchez, J. A. & Gotte, M. Inhibitors of the hepatitis C virus RNA-dependent RNA polymerase NS5B. Viruses 2, 2169–2195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mathias, A. Clinical Pharmacology of DAAs for HCV: what's new and what's in the pipeline. Presented at the 14th International Workshop on Clinical Pharmacology of HIV Therapy (2013).

  50. Cornpropst, M. et al. The effect of renal impairment and end stage renal disease on the single-dose pharmacokinetics of GS-7977 [abstract 1101]. J. Hepatol. 56 (Suppl. 2), S433 (2012).

    Article  Google Scholar 

  51. Lawitz, E. et al. The effect of hepatic impairment on the safety, pharmacokinetics, and antiviral activity of GS-7977 in hepatitis C infected subjects treated for seven days [abstract 1130]. J. Hepatol. 56 (Suppl. 1) S445–S446 (2012).

    Article  Google Scholar 

  52. Beumont-Mauviel, M. et al. The pharmacokinetic interaction between the investigational HCV NS3/4A protease inhibitor TMC435 and escitalopram [abstract 1353]. Hepatology 54 (Suppl. 1), 1000A (2011).

    Google Scholar 

  53. Kiser, J. J., Burton, J. R., Anderson, P. L. & Everson, G. T. Review and management of drug interactions with boceprevir and telaprevir. Hepatology 55, 1620–1628 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Hulskotte, E. et al. Pharmacokinetic interaction between the hepatitis C virus protease inhibitor boceprevir and cyclosporine and tacrolimus in healthy volunteers. Hepatology 56, 1622–1630 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Garg, V. et al. Effect of telaprevir on the pharmacokinetics of cyclosporine and tacrolimus. Hepatology 54, 20–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Ouwerkerk-Mahadevan, S., Simion, A., Mortier, S., Peeters, M. & Beumont-Mauviel, M. No clinically significant interaction between the investigational HCV protease inhibitor TMC435 and the immunosuppressives cyclosporine and tacrolimus [abstract 80]. Hepatology 56 (Suppl. 1), 213A (2012).

    Google Scholar 

  57. Kugelmas, M. et al. Hepatitis C virus therapy, hepatocyte drug metabolism, and risk for acute cellular rejection. Liver Transpl. 9, 1159–1165 (2003).

    Article  PubMed  Google Scholar 

  58. Mathias, A., Cornpropst, M., Clemons, D., Denning, J. & Symonds, W. No clinically significant pharmacokinetic drug-drug interactions between sofosbuvir (GS-7977) and the immunosuppressants, cyclosporine a or tacrolimus in healthy volunteers [abstract 1869]. Hepatology 56 (Suppl. 1) 1063A–1064A (2012).

    Google Scholar 

  59. O'Leary, J. G., McKenna, G. J., Klintmalm, G. B. & Davis, G. L. Effect of telaprevir on the pharmacokinetics of sirolimus in liver transplant recipients. Liver Transpl. 19, 463–465 (2013).

    Article  PubMed  Google Scholar 

  60. Burton, J. R. et al. A multicenter study of protease inhibitor-triple therapy in HCV-infected liver transplant recipients: report from the CRUSH-C Group [abstract 211]. Hepatology 56 (Suppl. 1), 297A (2012).

    Google Scholar 

  61. Coilly, A. et al. Efficacy and safety of protease inhibitors for hepatitis C recurrence after liver transplantation: a first multicentric experience [abstract 9]. Hepatology 56 (Suppl. 1), 194A–195A (2012).

    Google Scholar 

  62. Werner, C. R. et al. Telaprevir-based triple therapy in liver transplant patients with hepatitis C virus: a 12-week pilot study providing safety and efficacy data. Liver Transpl. 18, 1464–1470 (2012).

    Article  PubMed  Google Scholar 

  63. Burton, J. R. Jr & Everson, G. T. Management of the transplant recipient with chronic hepatitis C. Clin. Liver Dis. 17, 73–91 (2013).

    Article  PubMed  Google Scholar 

  64. Cantarovich, M. et al. Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation 66, 1621–1627 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Sulkowski, M. S. Viral hepatitis and HIV coinfection. J. Hepatol. 48, 353–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Kasserra, C., Hughes, E., Treitel, M., Gupta, S. & O'Mara, E. Clinical pharmacology of boceprevir: metabolism, excretion, and drug–drug interactions [abstract 118]. Presented at the 18th Conference on Retroviruses and Opportunistic Infections (2011).

  67. van Heeswijk, R. P., Beumont, M., Kauffman, R. S. & Garg, V. Review of drug interactions with telaprevir and antiretrovirals. Antivir. Ther. http://dx.doi.org/10.3851/IMP2527.

  68. de Kanter, C. T., Blonk, M. I., Colbers, A. P., Schouwenberg, B. J. & Burger, D. M. Lack of a clinically significant drug–drug interaction in healthy volunteers between the hepatitis C virus protease inhibitor boceprevir and the HIV integrase inhibitor raltegravir. Clin. Infect. Dis. 56, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Hulskotte, E. G. et al. Pharmacokinetic interactions between the hepatitis C virus protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, darunavir, and lopinavir. Clin. Infect. Dis. 56, 718–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Thomas, D. L. et al. Provisional guidance on the use of hepatitis C virus protease inhibitors for treatment of hepatitis C in HIV-infected persons. Clin. Infect. Dis. 54, 979–983 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kakuda, T. N. et al. Pharmacokinetic interaction between etravirine or rilpivirine and telaprevir in healthy volunteers: a randomised, two-way crossover trial [abstract O-18]. Presented at the 13th International Workshop on Clinical Pharmacology of HIV Therapy (2012).

  72. Hammond, K. P. et al. Pharmacokinetic interaction between boceprevir and etravirine in HIV/HCV seronegative volunteers. J. Acquir. Immune Defic. Syndr. 62, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Rhee, E. G. et al. Absence of a significant pharmacokinetic interaction between the HCV protease inhibitor boceprevir and HIV-1 NNRTI rilpivirine [abstract 537]. Presented at the 20th Conference on Retroviruses and Opportunistic Infections (2013).

  74. Vourvahis, M., Plotka, A., Kantaridis, C., Fang, A. & Heera, J. The effect of boceprevir or telaprevir on the pharmacokinetics of maraviroc: an open-label, fixed sequence study in healthy volunteers [abstract O-17]. Presented at the 14th International Workshop on Clinical Pharmacology of HIV Therapy (2013).

  75. Sabo, J. P. et al. Pharmacokinetic interactions of darunavir/ritonavir, efavirenz, and tenofovir with the HCV protease inhibitor faldaprevir in healthy volunteers [abstract 35]. Presented at the 20th Conference on Retroviruses and Opportunistic Infections (2013).

  76. Bifano, M. et al. Assessment of HIV antiretroviral drug interactions with the HCV NS5A replication complex inhibitor daclatasvir demonstrates a PK profile which supports coadministration with tenofovir, efavirez, and atazanavir/r [abstract 61B]. Presented at the 19th Conference on Retroviruses and Opportunistic Infections (2012).

  77. Ouwerkerk-Mahadevan, S., Sekar, V., Simion, A., Peeters, M. & Beumont-Mauviel, M. The pharmacokinetic interactions of the HCV protease inhibitor simeprevir (TMC435) with HIV antiretroviral agents in healthy volunteers [abstract 36620]. Presented at Infectious Diseases Week (2012).

  78. Kirby, B. et al. No clinically significant pharmacokinetic drug interactions between sofosbuvir (GS-7977) and HIV antiretroviral atripla, rilpivirine, darunavir/ritonavir, or raltegravir in healthy volunteers [abstract 1877]. Hepatology 56 (Suppl. 1), 1067A (2012.

    Google Scholar 

  79. Lin, W. H. et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and ethinyl estradiol/norethindrone [abstract 1901]. Hepatology 56 (Suppl. 1), 1078A–1079A (2012).

    Google Scholar 

  80. Garg, V. et al. The pharmacokinetic interaction between an oral contraceptive containing ethinyl estradiol and norethindrone and the HCV protease inhibitor telaprevir. J. Clin. Pharmacol. 52, 1574–1583 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Ouwerkerk-Mahadevan, S., Simion, A., Spittaels, K., Peeters, M. & Beumont-Mauviel, M. No pharmacokinetic interaction between the investigational HCV protease inhibitor simeprevir (TMC435) and an oral contraceptive containing ethinylestradiol and norethindrone [abstract 773]. Hepatology 56 (Suppl. 1), 565A–566A (2012).

    Google Scholar 

  82. Pfizer. Viagra® (sildenafil citrate) prescribing information. Pfizer [online], (2013).

  83. GlaxosSmithKline. Levitra (vardenafil hydrochloride) prescribing information. GlaxoSmithKline [online], (2013).

  84. Lilly. Cialis (tadalafil) prescribing information. Lilly [online], (2013).

  85. Jumes, P. et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and prednisone in healthy volunteers [abstract 1896]. Hepatology 56 (Suppl. 1), 1076A (2012).

    Google Scholar 

  86. Frankel, J. K. & Packer, C. D. Cushing's syndrome due to antiretroviral-budesonide interaction. Ann. Pharmacother. 45, 823–824 (2011).

    Article  PubMed  Google Scholar 

  87. Tseng, A. & Foisy, M. Important drug–drug interactions in HIV-infected persons on antiretroviral therapy: an update on new interactions between HIV and non-HIV drugs. Curr. Infect. Dis. Rep. 14, 67–82 (2012).

    Article  PubMed  Google Scholar 

  88. Smith, H. S. Opioid metabolism. Mayo Clin. Proc. 84, 613–624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gerber, J. G., Rhodes, R. J. & Gal, J. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality 16, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Cone, E. J., Gorodetzky, C. W., Yousefnejad, D., Buchwald, W. F. & Johnson, R. E. The metabolism and excretion of buprenorphine in humans. Drug Metab. Dispos. 12, 577–581 (1884).

    Google Scholar 

  91. van Heeswijk, R. et al. Pharmacokinetic interaction between telaprevir and methadone. Antimicrob. Agents Chemother. 57, 2304–2309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luo, X., Trevejo, J., Van Heeswijk, R. & Garg V. No significant effect of the HCV protease inhibitor telaprevir on the pharmacokinetics and pharmacodynamics of buprenorphine in HCV-negative volunteers [abstract 132]. Presented at HepDART Koloa, Hawaii (2011).

  93. Hulskotte, E. G. J. et al. Pharmacokinetic interaction between HCV protease inhibitor boceprevir and methadone or buprenorphine in subjects on stable maintenance therapy [abstract 771LB]. Presented at the 7th International Workshop on Clinical Pharmacology of Hepatitis Therapy (2012).

  94. Beumont-Mauviel, M., De Smedt, G., Peeters, M., Akuma, S. H. & Sekar, V. The pharmacokinetic interaction between the investigational NS3–4A HCV protease inhibitor TMC435 and methadone [abstract 1353]. Hepatology 54 (Suppl. 1), 1000A (2011).

    Google Scholar 

  95. Denning, J. et al. Lack of effect of the nucleotide analog polymerase inhibitor PSI-7977 on methadone pharmacokinetics and pharmacodynamics [abstract 372]. Hepatology 54 (Suppl. 1) 544A (2011).

    Google Scholar 

  96. Pirmohamed, M. Drug–grapefruit juice interactions: two mechanisms are clear but individual responses vary. BMJ 346, f1 (2013).

    Article  PubMed  Google Scholar 

  97. Seeff, L. B. et al. Herbal product use by persons enrolled in the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) Trial. Hepatology 47, 605–612 (2008).

    Article  PubMed  Google Scholar 

  98. Kipp, G., Mohammed, R., Lin, A. & Johnson, H. Evaluation of pharmacist identified and mitigated drug–drug interactions in hepatitis C virus infected patients starting telaprevir or boceprevir [abstract 1741]. Hepatology 56 (Suppl. 1), 1003A (2012).

    Google Scholar 

  99. van den Bout-van den Beukel, C. J., Koopmans, P. P., van der Ven, A. J., De Smet, P. A. & Burger, D. M. Possible drug-metabolism interactions of medicinal herbs with antiretroviral agents. Drug Metab. Rev. 38, 477–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Penzak, S. R. et al. Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir–ritonavir exposure in healthy subjects. Pharmacotherapy 30, 797–805 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Molto, J. et al. Herb–drug interaction between Echinacea purpurea and darunavir–ritonavir in HIV-infected patients. Antimicrob. Agents Chemother. 55, 326–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Piscitelli, S. C. et al. Effect of milk thistle on the pharmacokinetics of indinavir in healthy volunteers. Pharmacotherapy 22, 551–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Molto, J. et al. Effect of milk thistle on the pharmacokinetics of darunavir–ritonavir in HIV-infected patients. Antimicrob. Agents Chemother. 56, 2837–2841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Piscitelli, S. C., Burstein, A. H., Welden, N., Gallicano, K. D. & Falloon, J. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin. Infect. Dis. 34, 234–238 (2002).

    Article  PubMed  Google Scholar 

  105. Malati, C. Y. et al. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants. J. Clin. Pharmacol. 52, 932–939 (2012).

    Article  PubMed  Google Scholar 

  106. Robertson, S. M. Effect of ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 24, 591–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Henderson, L., Yue, Q. Y., Bergquist, C., Gerden, B. & Arlett, P. St John's wort (Hypericum perforatum): drug interactions and clinical outcomes. Br. J. Clin. Pharmacol. 54, 349–356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bernstein, B. et al. Pharmacokinetics, safety and tolerability of the HCV protease inhibitor ABT-450 with ritonavir following multiple ascending doses in healthy adult volunteers [abstract 58]. Presented at HepDART Kohala Coast, Hawaii (2009).

  109. Menon, R. et al. Pharmacokinetics, safety and tolerability following multiple dosing of polymerase inhibitor, ABT-333 and protease inhibitor, ABT-450 with ritonavir [abstract O-13]. Presented at the 7th International Workshop on Clinical Pharmacology of Hepatitis Therapy (2012).

  110. Eley, T. et al. Evaluation of drug interaction potential of the HCV protease inhibitor asunaprevir (ASV; BMS-650032) at 200 mg twice daily (BID) in metabolic cocktail and p-glycoprotein (P-gp) probe studies in health volunteers [abstract 381]. Hepatology 54 (Suppl. 1), 548A (2011).

    Google Scholar 

  111. Eley, T. et al. In vivo and in vitro assessment of asunaprevir (ASV; BMS-650032) as an inhibitor and substrate of organic anion transport polypeptide (OATP) transporters in healthy volunteers [abstract O-04]. Presented at the 7th International Workshop on Clinical Pharmacology of Hepatitis Therapy (2012).

  112. Jumes, P. et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and digoxin in healthy adult volunteers [abstract O-05]. Presented at the 7th International Workshop on Clinical Pharmacology of Hepatitis Therapy (2012).

  113. Marcos, P. N. et al. Danoprevir

  114. Dumas, E. et al. Pharmacokinetics, safety and tolerability of the HCV NS5A inhibitor ABT-267 following single and multiple doses in healthy adult volunteers [abstract 1204]. J. Hepatol. 54, S475 (2011).

    Article  Google Scholar 

  115. Moreira, S. et al. The effect of mild to moderate renal impairment on the pharmacokinetics (PK) of the hepatitis C virus (HCV) polymerase inhibitor mericitabine (MCB, RG7128) [abstract 358]. Hepatology 54 (Suppl. 1), 537A–538A (2011).

    Google Scholar 

  116. Ma, H. et al. Characterization of the metabolic activation of hepatitis C virus nucleoside inhibitor beta-D-2'-Deoxy-2'-fluoro-2'C-methylcytidine (PSI-6130) and identification of a novel active 5'-triphosphate species. J. Biol. Chem. 282, 29812–29820 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Maring, C. et al. Preclinical potency, pharmacokinetic and ADME characterization of ABT-333, a novel non-nucleoside HCV polymerase inhibitor [abstract 953]. J. Hepatol. 50 (Suppl. 1), S346–S347 (2009).

    Google Scholar 

Download references

Acknowledgements

J. J. Kiser acknowledges financial support from NIH grant R03 DK096121.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article, made substantial contributions to discussion of content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Jennifer J. Kiser.

Ethics declarations

Competing interests

J. J. Kiser receives or has recently received research support from Merck, Vertex and Janssen and served as a consultant for Bristol-Myers Squibb. J. R. Burton Jr receives research support from Gilead, Abbvie and Vertex. G. T. Everson has participated in advisory boards for Roche-Genentech, Merck, Vertex, Bristol-Myers Squibb, GlobeImmune, Abbott, Eisai, Novartis, Pfizer, Gilead, Biotest and Janssen-Tibotec. He has had consultant agreements with Roche-Genentech, Novartis, Bristol-Myers Squibb, Eisai, Kadmon, Vertex, Abbott, Biotest and Janssen-Tibotec. He serves on a data and safety monitoring board for Centocor. He holds equity interest in Source and HepQuant LLC and is a manager of HepQuant LLC. He has had clinical trials research grants from Roche-Genentech, Schering-Plough/Merck, Vertex, GlobeImmune, Gilead, Novartis, BMS, Pfizer, Source, Eisai, GlaxoSmithKline, Pharmassett, Ortho Biotech, Janssen-Tibotec, Amgen, Medtronic and Abbott-Abbvie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiser, J., Burton, J. & Everson, G. Drug–drug interactions during antiviral therapy for chronic hepatitis C. Nat Rev Gastroenterol Hepatol 10, 596–606 (2013). https://doi.org/10.1038/nrgastro.2013.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing