Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-throughput functional genomics using CRISPR–Cas9

Key Points

  • The RNA-mediated simple programmability of Cas9 opens new and exciting avenues for genome-scale functional interrogation of the genome.

  • Cas9 can be used for both nuclease-mediated gene knockout and transcriptional modulation approaches. The mechanisms of these perturbations differ substantially from the more established RNA interference (RNAi) approaches for targeted genetic screens.

  • Screening applications can be carried out in a wide range of formats using different molecular reagents and delivery vehicles. These will have an effect on the possible applications, readout and perturbation kinetics.

  • Initial Cas9-based screens displayed remarkable results: high consistency across unique reagents that target the same genetic elements, high rates of editing and large phenotypic effects.

  • There are still several challenges in the further development of Cas9-based genetic screens, such as unbiased investigation into false-negative rates, more unbiased evaluation of off-target effects, increased efficacy of designed reagents and improved readout methods.

Abstract

Forward genetic screens are powerful tools for the discovery and functional annotation of genetic elements. Recently, the RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has been combined with genome-scale guide RNA libraries for unbiased, phenotypic screening. In this Review, we describe recent advances using Cas9 for genome-scale screens, including knockout approaches that inactivate genomic loci and strategies that modulate transcriptional activity. We discuss practical aspects of screen design, provide comparisons with RNA interference (RNAi) screening, and outline future applications and challenges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mechanisms underlying gene perturbation via lentiviral delivery of RNA interference reagents, Cas9 nuclease and dCas9 transcriptional effectors.
Figure 2: dCas9-mediated transcriptional modulation.
Figure 3: Screening strategies in either arrayed or pooled formats.
Figure 4: Distinct expression distributions for knockdown and knockout of a gene.

Similar content being viewed by others

References

  1. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nature Rev. Genet. 9, 554–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kile, B. T. & Hilton, D. J. The art and design of genetic screens: mouse. Nature Rev. Genet. 6, 557–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Grimm, S. The art and design of genetic screens: mammalian culture cells. Nature Rev. Genet. 5, 179–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jorgensen, E. M. & Mango, S. E. The art and design of genetic screens: Caenorhabditis elegans. Nature Rev. Genet. 3, 356–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nature Rev. Genet. 3, 176–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Patton, E. E. & Zon, L. I. The art and design of genetic screens: zebrafish. Nature Rev. Genet. 2, 956–966 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Forsburg, S. L. The art and design of genetic screens: yeast. Nature Rev. Genet. 2, 659–668 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Page, D. R. & Grossniklaus, U. The art and design of genetic screens: Arabidopsis thaliana. Nature Rev. Genet. 3, 124–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Shuman, H. A. & Silhavy, T. J. The art and design of genetic screens: Escherichia coli. Nature Rev. Genet. 4, 419–431 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sundaram, M. V. The love–hate relationship between Ras and Notch. Genes Dev. 19, 1825–1839 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Determination of anteroposterior polarity in Drosophila. Science 238, 1675–1681 (1987).

    Article  PubMed  Google Scholar 

  12. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  13. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Schneeberger, K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nature Rev. Genet. 15, 662–676 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Copeland, N. G. & Jenkins, N. A. Harnessing transposons for cancer gene discovery. Nature Rev. Cancer 10, 696–706 (2010).

    Article  CAS  Google Scholar 

  17. Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G. & Jenkins, N. A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rad, R. et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330, 1104–1107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kotecki, M., Reddy, P. S. & Cochran, B. H. Isolation and characterization of a near-haploid human cell line. Exp. Cell Res. 252, 273–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Guo, G., Wang, W. & Bradley, A. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429, 891–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). This paper reports the discovery of RNAi in Caenorhabditis elegans.

    Article  CAS  PubMed  Google Scholar 

  23. Ketting, R. F. The many faces of RNAi. Dev. Cell 20, 148–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S. & Sabatini, D. M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods 3, 715–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, K., Elledge, S. J. & Hannon, G. J. Lessons from nature: microRNA-based shRNA libraries. Nature Methods 3, 707–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Moffat, J. & Sabatini, D. M. Building mammalian signalling pathways with RNAi screens. Nature Rev. Mol. Cell Biol. 7, 177–187 (2006).

    Article  CAS  Google Scholar 

  31. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Rev. Drug Discov. 9, 57–67 (2010).

    Article  CAS  Google Scholar 

  34. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotech. 21, 635–637 (2003).

    Article  CAS  Google Scholar 

  36. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010). This paper reports that Cas9 facilitates the cleavage of target DNA in bacterial cells.

    Article  CAS  PubMed  Google Scholar 

  38. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011). This paper reports that processing of CRISPR RNA is facilitated by small non-coding transactivating crRNA (tracrRNA).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011). This paper reports that the Cas9 system is modular and can be transplanted into distant bacterial species to target plasmid DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This paper, along with reference 40, characterizes Cas9-mediated DNA cleavage in vitro . This paper also shows that Cas9 can cleave DNA in vitro using chimeric sgRNAs containing a truncated tracrRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013). References 42 and 43 describe the successful harnessing of Cas9 for genome editing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014). References 44 and 45 describe the development of lentiviral genome-scale sgRNA libraries and the application for positive and negative selection genetic screening in human cells.

    Article  CAS  PubMed  Google Scholar 

  46. Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, M. D. C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotech. 32, 267–273 (2014). This paper describes the development of lentiviral genome-scale sgRNA libraries and the application for positive and negative selection genetic screening in mouse cells.

    Article  CAS  Google Scholar 

  47. Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). This paper describes the development and application of lentiviral genome-scale dCas9-mediated gene activation and repression for gain-of-function and loss-of-function screening.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015). This paper describes structure-guided engineering of a robust Cas9-based transcriptional activator and the development of a genome-scale sgRNA library for gain-of-function genetic screening.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H. & Kim, J.-S. A guide to genome engineering with programmable nucleases. Nature Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nature Biotech. 32, 1262–1267 (2014).

    Article  CAS  Google Scholar 

  54. Echeverri, C. J. & Perrimon, N. High-throughput RNAi screening in cultured cells: a user's guide. Nature Rev. Genet. 7, 373–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Mohr, S. E., Smith, J. A., Shamu, C. E., Neumüller, R. A. & Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nature Rev. Mol. Cell Biol. 15, 591–600 (2014).

    Article  CAS  Google Scholar 

  56. Schramek, D. et al. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343, 309–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beronja, S. et al. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501, 185–190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, P. et al. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506, 52–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S.-W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Burgess, D. J. Small RNAs: antiviral RNAi in mammals. Nature Rev. Genet. 14, 821 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Pan, Q., van der Laan, L. J. W., Janssen, H. L. A. & Peppelenbosch, M. P. A dynamic perspective of RNAi library development. Trends Biotechnol. 30, 206–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protoc. 8, 2180–2196 (2013).

    Article  CAS  Google Scholar 

  66. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nature Methods 8, 659–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nature Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nature Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotech. 31, 833–838 (2013).

    Article  CAS  Google Scholar 

  74. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Bregman, A. et al. Promoter elements regulate cytoplasmic mRNA decay. Cell 147, 1473–1483 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Trcek, T., Larson, D. R., Moldón, A., Query, C. C. & Singer, R. H. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147, 1484–1497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hasson, S. A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nature Methods 3, 385–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. LeProust, E. M. et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 38, 2522–2540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cleary, M. A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods 1, 241–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Malina, A. et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 27, 2602–2614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rudalska, R. et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nature Med. 20, 1138–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotech. 31, 827–832 (2013).

    Article  CAS  Google Scholar 

  90. Bassik, M. C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nature Methods 6, 443–445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Whittaker, S. R. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 3, 350–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nature Methods 6, 569–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotech. 32, 670–676 (2014).

    Article  CAS  Google Scholar 

  95. Bae, S., Kweon, J., Kim, H. S. & Kim, J.-S. Microhomology-based choice of Cas9 nuclease target sites. Nature Methods 11, 705–706 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Hendel, A. et al. Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep. 7, 293–305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotech. 31, 839–843 (2013).

    Article  CAS  Google Scholar 

  98. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nature Biotech. 31, 822–826 (2013).

    Article  CAS  Google Scholar 

  99. Lin, Y. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473–7485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Veres, A. et al. Low incidence of off-target mutations in individual CRISPR–Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27–30 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, C. et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Frock, R. L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotech. 33, 179–186 (2015).

    Article  CAS  Google Scholar 

  104. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nature Biotech. 33, 187–197 (2015).

    Article  CAS  Google Scholar 

  105. Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nature Biotech. 32, 677–683 (2014).

    Article  CAS  Google Scholar 

  106. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR–Cas nuclease specificity using truncated guide RNAs. Nature Biotech. 32, 279–284 (2014).

    Article  CAS  Google Scholar 

  109. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ran, F. A. et al. In vivo genome editing with Staphylococcus aureus Cas9. Nature (in the press).

  112. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qiu, S., Adema, C. M. & Lane, T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 33, 1834–1847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Buehler, E. et al. siRNA off-target effects in genome-wide screens identify signaling pathway members. Sci. Rep. 2, 428 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Franceschini, A. et al. Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proc. Natl Acad. Sci. USA 111, 4548–4553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhong, R. et al. Computational detection and suppression of sequence-specific off-target phenotypes from whole genome RNAi screens. Nucleic Acids Res. 42, 8214–8222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR–Cas9. Nature Biotech. 33, 102–106 (2015).

    Article  CAS  Google Scholar 

  121. Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nature Rev. Drug Discov. 3, 318–329 (2004).

    Article  CAS  Google Scholar 

  122. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bassik, M. C. et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909–922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kellis, M. et al. Defining functional DNA elements in the human genome. Proc. Natl Acad. Sci. USA 111, 6131–6138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636–640 (2004).

Download references

Acknowledgements

The authors thank L. Solomon for help with illustrations, J. Wright for manuscript review and members of the Zhang Laboratory for discussions. O.S. is supported by a Klarman Family Foundation Fellowship. N.E.S. is supported by a Simons Center for the Social Brain Postdoctoral Fellowship and by the National Human Genome Research Institute (NHGRI) of the US National Institutes of Health under award number K99-HG008171. F.Z. is supported by the US National Institute of Mental Health (NIMH) (DP1-MH100706), the US National Institute of Neurological Disorders and Stroke (NINDS) (R01-NS07312401), a US National Science Foundation (NSF) Waterman Award, the Keck, Damon Runyon, Searle Scholars, Klingenstein, Vallee, Merkin, Simons, and New York Stem Cell Foundations, and Bob Metcalfe. F.Z. is a New York Stem Cell Foundation Robertson Investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ophir Shalem or Feng Zhang.

Ethics declarations

Competing interests

N.E.S., O.S. and F.Z. are named on patent applications related to this work. F.Z. is a cofounder of Editas Medicine and a scientific adviser for Editas Medicine and Horizon Discovery.

PowerPoint slides

Glossary

Small interfering RNA

(siRNA). RNA molecules that are 21–23 nucleotides long and that are processed from long double-stranded RNAs; they are functional components of the RNA-induced silencing complex (RISC). siRNAs typically target and silence mRNAs by binding perfectly complementary sequences in the mRNA and causing their degradation and/or translational inhibition.

Short hairpin RNA

(shRNA). Small RNAs forming hairpins that can induce sequence-specific silencing in mammalian cells through RNA interference, both when expressed endogenously and when produced exogenously and transfected into the cell.

microRNA

(miRNA). Small RNA molecules processed from hairpin-containing RNA precursors that are produced from endogenous miRNA-encoding genes. miRNAs are 21–23 nucleotides in length and, through the RNA-induced silencing complex (RISC), they target and silence mRNAs containing imperfectly complementary sequences.

Indel

(Insertion and deletion). Mutations due to small insertions or deletions of DNA sequences.

Single guide RNA

(sgRNA). An artificial fusion of CRISPR (clustered regularly interspaced short palindromic repeat) RNA (crRNA) and transactivating crRNA (tracrRNA) with critical secondary structures for loading onto Cas9 for genome editing. It functionally substitutes the complex of crRNA and tracrRNA that occurs in natural CRISPR systems. It uses RNA–DNA hybridization to guide Cas9 to the genomic target.

Nonsense-mediated decay

(NMD). An mRNA surveillance mechanism that degrades mRNAs containing nonsense mutations to prevent the expression of truncated or erroneous proteins.

CRISPRi

An engineered transcriptional silencing complex based on catalytically inactive Cas9 (dCas9) fusions and/or single guide RNA (sgRNA) modification.

CRISPRa

An engineered transcriptional activation complex based on catalytically inactive Cas9 (dCas9) fusions and/or single guide RNA (sgRNA) modification.

False-positive

Pertaining to screening results: in a screen that results in a set of putative gene hits associated with a phenotype, a false positive is a gene that is predicted to be associated but that is actually not associated with the phenotype.

False-negative

Pertaining to screening results: in a screen that results in a set of putative gene hits associated with a phenotype, a false negative is a true hit that was missed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalem, O., Sanjana, N. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16, 299–311 (2015). https://doi.org/10.1038/nrg3899

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3899

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research