Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Stress and the epigenetic landscape: a link to the pathobiology of human diseases?

Abstract

Accumulating evidence points to a major role for chronic stress of cell renewal systems in the pathogenesis of important human diseases, including cancer, atherosclerosis and diabetes. Here we discuss emerging evidence that epigenetic abnormalities may make substantial contributions to these stress-induced pathologies. Although the mechanisms remain to be fully elucidated, we suggest that chronic stress can elicit heritable changes in the chromatin landscape that 'lock' cells in abnormal states, which then lead to disease. We emphasize the need to investigate epigenetic states in disease and links to stress and to consider how the knowledge gained through these studies may foster new means of disease prevention and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of stress on cell renewal systems.
Figure 2: Perturbations caused by chronic stress.

Similar content being viewed by others

References

  1. Beckman, J. A., Creager, M. A. & Libby, P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287, 2570–2581 (2002).

    CAS  PubMed  Google Scholar 

  2. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Visconti, R. & Grieco, D. New insights on oxidative stress in cancer. Curr. Opin. Drug Discov. Devel. 12, 240–245 (2009).

    CAS  PubMed  Google Scholar 

  4. Zawia, N. H., Lahiri, D. K. & Cardozo-Pelaez, F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic. Biol. Med. 46, 1241–1249 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rossi, D. J., Jamieson, C. H. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008).

    CAS  PubMed  Google Scholar 

  6. Silva, H. & Conboy, I. Aging and stem cell renewal. StemBook 1–13 (2008).

  7. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, e201 (2007).

    PubMed  PubMed Central  Google Scholar 

  8. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  10. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  11. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  12. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007).

    CAS  PubMed  Google Scholar 

  13. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Esteller, M. Epigenetics in evolution and disease. Lancet 372, S90–S96 (2008).

    Google Scholar 

  16. Nelson, W. G., De Marzo, A. M., DeWeese, T. L. & Isaacs, W. B. The role of inflammation in the pathogenesis of prostate cancer. J. Urol. 172, S6–S12 (2004).

    CAS  PubMed  Google Scholar 

  17. Pani, G., Galeotti, T. & Chiarugi, P. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev. 29, 351–378 (2010).

    CAS  PubMed  Google Scholar 

  18. Meng, X. & Riordan, N. H. Cancer is a functional repair tissue. Med. Hypotheses 66, 486–490 (2006).

    CAS  PubMed  Google Scholar 

  19. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  Google Scholar 

  20. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tlsty, T. D. & Coussens, L. M. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 1, 119–150 (2006).

    CAS  PubMed  Google Scholar 

  22. Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006).

    CAS  PubMed  Google Scholar 

  23. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  24. Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer — a mechanism for early oncogenic pathway addiction? Nature Rev. Cancer 6, 107–116 (2006).

    CAS  Google Scholar 

  26. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33 (2006).

    CAS  PubMed  Google Scholar 

  27. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    CAS  PubMed  Google Scholar 

  28. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  PubMed  Google Scholar 

  29. Baylin, S. B. Stem cells, cancer, and epigenetics. StemBook 1–14 (2009).

  30. Issa, J. P. CpG-island methylation in aging and cancer. Curr. Top. Microbiol. Immunol. 249, 101–118 (2000).

    CAS  PubMed  Google Scholar 

  31. Issa, J. P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540 (1994).

    CAS  PubMed  Google Scholar 

  32. Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C. M. & Green, M. R. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449, 1073–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Opavsky, R. et al. CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet. 3, 1757–1769 (2007).

    CAS  PubMed  Google Scholar 

  34. Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007).

    CAS  PubMed  Google Scholar 

  36. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007).

    CAS  PubMed  Google Scholar 

  37. Ohm, J. E. & Baylin, S. B. Stem cell chromatin patterns: an instructive mechanism for DNA hypermethylation? Cell Cycle 6, 1040–1043 (2007).

    CAS  PubMed  Google Scholar 

  38. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009).

    CAS  PubMed  Google Scholar 

  39. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  40. Chi, A. S. & Bernstein, B. E. Developmental biology. Pluripotent chromatin state. Science 323, 220–221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    CAS  PubMed  Google Scholar 

  42. Tiwari, V. K. et al. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 6, 2911–2927 (2008).

    CAS  PubMed  Google Scholar 

  43. O'Hagan, H. M., Mohammad, H. P. & Baylin, S. B. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 4, e1000155 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    CAS  PubMed  Google Scholar 

  45. Wierda, R. J., Geutskens, S. B., Jukema, J. W., Quax, P. H. & van den Elsen, P. J. Epigenetics in atherosclerosis and inflammation. J. Cell. Mol. Med. 14, 1225–1240 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Victor, V. M. et al. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des 15, 2988–3002 (2009).

    CAS  PubMed  Google Scholar 

  48. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  Google Scholar 

  49. Turunen, M. P., Aavik, E. & Yla-Herttuala, S. Epigenetics and atherosclerosis. Biochim. Biophys. Acta 1790, 886–891 (2009).

    CAS  PubMed  Google Scholar 

  50. Kim, J. et al. Epigenetic changes in estrogen receptor β gene in atherosclerotic cardiovascular tissues and in vitro vascular senescence. Biochim. Biophys. Acta 1772, 72–80 (2007).

    CAS  PubMed  Google Scholar 

  51. Yoshida, T., Gan, Q. & Owens, G. K. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am. J. Physiol. Cell Physiol. 295, C1175–C1182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    CAS  PubMed  Google Scholar 

  53. Ying, A. K. et al. Methylation of the estrogen receptor-α gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc. Res. 46, 172–179 (2000).

    CAS  PubMed  Google Scholar 

  54. Kim, J. et al. Epigenetic changes in estrogen receptor β gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim. Biophys. Acta 1772, 72–80 (2007).

    CAS  PubMed  Google Scholar 

  55. Villeneuve, L. M. & Natarajan, R. The role of epigenetics in the pathology of diabetic complications. Am. J. Physiol. Renal Physiol. 299, F14–F25 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chauhan, V. & Chauhan, A. Oxidative stress in Alzheimer's disease. Pathophysiology 13, 195–208 (2006).

    CAS  PubMed  Google Scholar 

  57. Chauhan, A. & Chauhan, V. Oxidative stress in autism. Pathophysiology 13, 171–181 (2006).

    CAS  PubMed  Google Scholar 

  58. Morris, L. G., Veeriah, S. & Chan, T. A. Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 29, 3453–3464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dulac, C. Brain function and chromatin plasticity. Nature 465, 728–735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Abel, T. & Zukin, R. S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 8, 57–64 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Urdinguio, R. G., Sanchez-Mut, J. V. & Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056–1072 (2009).

    CAS  PubMed  Google Scholar 

  62. Wang, L. W., Berry-Kravis, E. & Hagerman, R. J. Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics 7, 264–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    CAS  PubMed  Google Scholar 

  64. Yasui, D. H. et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl Acad. Sci. USA 104, 19416–19421 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schanen, N. C. Epigenetics of autism spectrum disorders. Hum. Mol. Genet. 15, R138–R150 (2006).

    CAS  PubMed  Google Scholar 

  67. Nguyen, A., Rauch, T. A., Pfeifer, G. P. & Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 24, 3036–3051 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bonda, D. J. et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59, 290–294 (2010).

    CAS  PubMed  Google Scholar 

  69. Guglielmotto, M., Giliberto, L., Tamagno, E. & Tabaton, M. Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front. Aging Neurosci. 2, 3 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marques, S. C., Oliveira, C. R., Outeiro, T. F. & Pereira, C. M. Alzheimer's disease: the quest to understand complexity. J. Alzheimers Dis. 21, 373–383 (2010).

    CAS  PubMed  Google Scholar 

  71. Donmez, G., Wang, D., Cohen, D. E. & Guarente, L. SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10. Cell 142, 320–332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Miao, F. et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57, 3189–3198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Broske, A. M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature Genet. 41, 1207–1215 (2009).

    PubMed  Google Scholar 

  74. Trowbridge, J. J., Snow, J. W., Kim, J. & Orkin, S. H. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5, 442–449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L. & Khavari, P. A. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463, 563–567.

  76. Jankowski, J. A. et al. Molecular evolution of the metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am. J. Pathol. 154, 965–973 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bian, Y. S., Osterheld, M. C., Fontolliet, C., Bosman, F. T. & Benhattar, J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett's esophagus. Gastroenterology 122, 1113–11121 (2002).

    CAS  PubMed  Google Scholar 

  78. Eads, C. A. et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 61, 3410–3418 (2001).

    CAS  PubMed  Google Scholar 

  79. Belinsky, S. A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nature Rev. Cancer 4, 707–717 (2004).

    CAS  Google Scholar 

  80. Ling, C. & Groop, L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718–2725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Woo, M. & Patti, M. E. Diabetes risk begins in utero. Cell Metab. 8, 5–7 (2008).

    CAS  PubMed  Google Scholar 

  82. Park, J. H., Stoffers, D. A., Nicholls, R. D. & Simmons, R. A. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest. 118, 2316–2324 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steger, D. J. et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 24, 1035–1044 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lefterova, M. I. et al. PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22, 2941–2952 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujiki, K., Kano, F., Shiota, K. & Murata, M. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 7, 38 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jones, P. A. et al. Moving AHEAD with an international human epigenome project. Nature 454, 711–715 (2008).

    CAS  Google Scholar 

  88. Feinberg, A. P. Genome-scale approaches to the epigenetics of common human disease. Virchows Arch. 456, 13–21 (2010).

    CAS  PubMed  Google Scholar 

  89. O'Neill, L. P., VerMilyea, M. D. & Turner, B. M. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genet. 38, 835–841 (2006).

    CAS  PubMed  Google Scholar 

  90. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    CAS  PubMed  Google Scholar 

  92. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Qin, W. et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem. 281, 21745–21754 (2006).

    CAS  PubMed  Google Scholar 

  94. Guarente, L. Cell biology. Hypoxic hookup. Science 324, 1281–1282 (2009).

    CAS  PubMed  Google Scholar 

  95. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Baylin laboratory for helpful suggestions and reading of the manuscript and K. Bender for help with manuscript preparation. Portions of the authors' work cited have been supported by the National Cancer Institute grant CA043318, the National Institute of Environmental Health Sciences grant ES011858 and the National Institutes of Health grant CA116160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Baylin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Amyloid plaque

A focal extracellular collection of amyloid protein that surrounds dystrophic neurites in the hippocampus, amygdala and neocortex.

Committed progenitor cell

A multipotent cell that is committed to a particular lineage and incapable of self-renewal.

Histone post-translational modification

A covalent alteration of a histone tail residue that alters chromatin structure. Modifications include phosphorylation, methylation, acetylation, sumoylation and ubiquitylation.

Histone variant

A histone that differs from canonical histones in terms of its structure and regulation.

Neoplasia

The abnormal proliferation of cells. A neoplasm can be further characterized as benign or malignant based on its ability to invade other tissues.

Neurofibrillary tangle

A filamentous bundle of tau protein that aggregates in the cytoplasm of neurons and is a histological hallmark of Alzheimer's disease.

Nucleosome remodelling

An enzymatic process that alters the position of nucleosomes and can influence chromatin condensation.

Peripheral resistance

The resistance of the peripheral vasculature to blood flow.

Polycomb group

A family of proteins that are involved in gene silencing during development through methylation of histone H3 lysine 27.

Pre-malignant

A state in which a cell is benign but poised to become malignant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, S., Baylin, S. Stress and the epigenetic landscape: a link to the pathobiology of human diseases?. Nat Rev Genet 11, 806–812 (2010). https://doi.org/10.1038/nrg2881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing