Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mapping complex disease traits with global gene expression

Key Points

  • Genome-wide association (GWA) studies have identified many new loci associated with human disease, but the association signals have yet to be translated into a proper understanding of which gene or genetic elements are mediating disease susceptibility at particular loci.

  • The functional effects of DNA polymorphism on multifactorial disease are infrequently mediated through mutations that alter protein function, and variation in gene expression is likely to be a more important mechanism underlying susceptibility to complex disease.

  • Transcript abundances of genes are directly modified by polymorphism in regulatory elements and transcript abundances can be considered as quantitative traits that can be mapped with considerable power. These have been named expression QTLs (eQTLs).

  • This Review explores the value of systematic identification of eQTLs as one means of characterizing the function of loci underlying complex disease traits.

  • The combination of whole-genome genetic association studies and measurement of global gene expression allows the systematic identification of eQTLs.

  • The resulting comprehensive eQTL maps provide an important source of reference for categorizing both cis and trans effects on disease-associated SNPs on gene expression.

  • In addition to providing information about the biological control of gene expression, such data aid in interpreting the results of GWA studies. The availability of systematically generated eQTL information provides immediate insight into a probable biological basis for the disease associations, and can help to identify networks of genes involved in disease pathogenesis.

  • First, we briefly introduce the principles and current methods of eQTL mapping and describe the basis of eQTLs. We then explore the relevance of these results to disease gene identification.

  • The limits of current eQTL mapping data are discussed, as is the expected impact of new technologies, international efforts to extend results to new samples and tissues and how cell lines might be tested with stimuli relevant to disease.

Abstract

Variation in gene expression is an important mechanism underlying susceptibility to complex disease. The simultaneous genome-wide assay of gene expression and genetic variation allows the mapping of the genetic factors that underpin individual differences in quantitative levels of expression (expression QTLs; eQTLs). The availability of systematically generated eQTL information could provide immediate insight into a biological basis for disease associations identified through genome-wide association (GWA) studies, and can help to identify networks of genes involved in disease pathogenesis. Although there are limitations to current eQTL maps, understanding of disease will be enhanced with novel technologies and international efforts that extend to a wide range of new samples and tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: eQTL mapping.

Similar content being viewed by others

References

  1. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  2. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genet. 38, 441–446 (2006).

    CAS  PubMed  Google Scholar 

  3. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    CAS  PubMed  Google Scholar 

  4. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003). This paper shows the power of eQTL analysis in humans.

    CAS  PubMed  Google Scholar 

  5. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nature Rev. Genet. 7, 862–872 (2006).

    CAS  PubMed  Google Scholar 

  8. Gilad, Y., Rifkin, S. A. & Pritchard, J. K. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jia, Z. & Xu, S. Mapping quantitative trait loci for expression abundance. Genetics 176, 611–623 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlborg, O. et al. Methodological aspects of the genetic dissection of gene expression. Bioinformatics 21, 2383–2393 (2005).

    CAS  PubMed  Google Scholar 

  11. Kendziorski, C. M., Chen, M., Yuan, M., Lan, H. & Attie, A. D. Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62, 19–27 (2006).

    CAS  PubMed  Google Scholar 

  12. Schliekelman, P. Statistical power of expression quantitative trait loci for mapping of complex trait loci in natural populations. Genetics 178, 2201–2216 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nature Genet. 39, 1202–1207 (2007).

    CAS  PubMed  Google Scholar 

  14. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008).

    CAS  PubMed  Google Scholar 

  15. Goring, H. H. et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genet. 39, 1208–1216 (2007).

    PubMed  Google Scholar 

  16. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008). This paper illustrates the power of eQTL and network analysis in unravelling complex trait genetics.

    CAS  PubMed  Google Scholar 

  17. Schadt, E. E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Petretto, E. et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2, e172 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Monks, S. A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Veyrieras, J. B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genet. 37, 243–253 (2005).

    CAS  PubMed  Google Scholar 

  22. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genet. 35, 57–64 (2003).

    CAS  PubMed  Google Scholar 

  23. Shimada, M. K. et al. VarySysDB: a human genetic polymorphism database based on all H-InvDB transcripts. Nucleic Acids Res. 37, D810–D815 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzales, J. M. et al. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation. PLoS Biol. 6, e238 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Mileyko, Y., Joh, R. I. & Weitz, J. S. Small-scale copy number variation and large-scale changes in gene expression. Proc. Natl Acad. Sci. USA 105, 16659–16664 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet. 38, 1378–1385 (2006). This paper shows the extent and distribution of methylation in the human genome.

    CAS  PubMed  Google Scholar 

  28. Krebs, J. E. Moving marks: dynamic histone modifications in yeast. Mol. Biosyst. 3, 590–597 (2007).

    CAS  PubMed  Google Scholar 

  29. Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007).

    CAS  PubMed  Google Scholar 

  30. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  PubMed  Google Scholar 

  31. Bouzigon, E. et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 359, 1985–1994 (2008).

    CAS  PubMed  Google Scholar 

  32. Duan, S. et al. Genetic architecture of transcript-level variation in humans. Am. J. Hum. Genet. 82, 1101–1113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Galanter, J. et al. ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am. J. Respir. Crit. Care Med. 177, 1194–1200 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sleiman, P. M. et al. ORMDL3 variants associated with asthma susceptibility in North Americans of European ancestry. J. Allergy Clin. Immunol. 122, 1225–1227 (2008).

    CAS  PubMed  Google Scholar 

  35. Tavendale, R., Macgregor, D. F., Mukhopadhyay, S. & Palmer, C. N. A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J. Allergy Clin. Immunol. 121, 860–863 (2008).

    CAS  PubMed  Google Scholar 

  36. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genet. 40, 955–962 (2008). A substantial meta-analysis of susceptibility loci underlying Crohn's disease that illustrates the problem of unattributed heritability and the utility of eQTL data in understanding the function of disease-associated SNPs.

    CAS  PubMed  Google Scholar 

  37. Libioulle, C. et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 3, e58 (2007).

    PubMed  PubMed Central  Google Scholar 

  38. Kabashima, K. et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J. Clin. Invest. 109, 883–893 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rioux, J. D. et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nature Genet. 29, 223–228 (2001).

    CAS  PubMed  Google Scholar 

  40. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nature Genet. 41, 56–65 (2009).

    CAS  PubMed  Google Scholar 

  41. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genet. 41, 25–34 (2009).

    CAS  PubMed  Google Scholar 

  42. Horton, R. et al. Gene map of the extended human MHC. Nature Rev. Genet. 5, 889–899 (2004).

    CAS  PubMed  Google Scholar 

  43. Alberts, R. et al. Sequence polymorphisms cause many false cis eQTLs. PLoS ONE 2, e622 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Beaty, J. S., West, K. A. & Nepom, G. T. Functional effects of a natural polymorphism in the transcriptional regulatory sequence of HLA-DQB1. Mol. Cell. Biol. 15, 4771–4782 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nejentsev, S. et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450, 887–892 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sieberts, S. K. & Schadt, E. E. Moving toward a system genetics view of disease. Mamm. Genome 18, 389–401 (2007).

    PubMed  PubMed Central  Google Scholar 

  47. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  48. Goh, K. I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Barnes, M., Freudenberg, J., Thompson, S., Aronow, B. & Pavlidis, P. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res. 33, 5914–5923 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pedotti, P. et al. Can subtle changes in gene expression be consistently detected with different microarray platforms? BMC Genomics 9, 124 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. van Ruissen, F. et al. Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips. BMC Genomics 6, 91 (2005).

    PubMed  PubMed Central  Google Scholar 

  53. Bosotti, R. et al. Cross platform microarray analysis for robust identification of differentially expressed genes. BMC Bioinformatics 8 (Suppl. 1), S5 (2007).

    PubMed  PubMed Central  Google Scholar 

  54. Ji, Y. et al. RefSeq refinements of UniGene-based gene matching improve the correlation of expression measurements between two microarray platforms. Appl. Bioinformatics 5, 89–98 (2006).

    CAS  PubMed  Google Scholar 

  55. Carter, S. L., Eklund, A. C., Mecham, B. H., Kohane, I. S. & Szallasi, Z. Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements. BMC Bioinformatics 6, 107 (2005).

    PubMed  PubMed Central  Google Scholar 

  56. Sohail, M., Akhtar, S. & Southern, E. M. The folding of large RNAs studied by hybridization to arrays of complementary oligonucleotides. RNA 5, 646–655 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Southern, E., Mir, K. & Shchepinov, M. Molecular interactions on microarrays. Nature Genet. 21, 5–9 (1999). This review, by the inventor of DNA microarrays, highlights the complexity and unpredictability of the interactions between nucleic acids in solution and target sequences on solid supports.

    CAS  PubMed  Google Scholar 

  58. Kapur, K., Xing, Y., Ouyang, Z. & Wong, W. H. Exon arrays provide accurate assessments of gene expression. Genome Biol. 8, R82 (2007).

    PubMed  PubMed Central  Google Scholar 

  59. Okoniewski, M. J., Hey, Y., Pepper, S. D. & Miller, C. J. High correspondence between Affymetrix exon and standard expression arrays. Biotechniques 42, 181–185 (2007).

    CAS  PubMed  Google Scholar 

  60. Clark, T. A. et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol. 8, R64 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. Wold, B. & Myers, R. M. Sequence census methods for functional genomics. Nature Methods 5, 19–21 (2008).

    CAS  PubMed  Google Scholar 

  62. Watson, R. M., Griaznova, O. I., Long, C. M. & Holland, M. J. Increased sample capacity for genotyping and expression profiling by kinetic polymerase chain reaction. Anal. Biochem. 329, 58–67 (2004).

    CAS  PubMed  Google Scholar 

  63. Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genet. 40, 575–583 (2008).

    CAS  PubMed  Google Scholar 

  64. Brem, R. B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. USA 102, 1572–1577 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Moffatt, M. & Cookson, W. The genetics of asthma. Maternal effects in atopic disease. Clin. Exp. Allergy 28 (Suppl. 1), 56–61 (1998).

    PubMed  Google Scholar 

  66. Bennett, S. & Todd, J. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu. Rev. Genet. 30, 343–370 (1996).

    CAS  PubMed  Google Scholar 

  67. Warram, J. H., Krolewski, A. S., Gottlieb, M. S. & Kahn, C. R. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N. Engl. J. Med. 311, 149–152 (1984).

    CAS  PubMed  Google Scholar 

  68. Koumantaki, Y. et al. Family history as a risk factor for rheumatoid arthritis: a case–control study. J. Rheumatol. 24, 1522–1526 (1997).

    CAS  PubMed  Google Scholar 

  69. Burden, A. et al. Genetics of psoriasis: paternal inheritance and a locus on chromosome 6p. J. Invest. Dermatol. 110, 958–960 (1998); comment 112, 514–516 (1999).

    CAS  PubMed  Google Scholar 

  70. Akolkar, P. N. et al. Differences in risk of Crohn's disease in offspring of mothers and fathers with inflammatory bowel disease. Am. J. Gastroenterol. 92, 2241–2244 (1997).

    CAS  PubMed  Google Scholar 

  71. Vorechovsky, I., Webster, A. D., Plebani, A. & Hammarstrom, L. Genetic linkage of IgA deficiency to the major histocompatibility complex: evidence for allele segregation distortion, parent-of-origin penetrance differences, and the role of anti-IgA antibodies in disease predisposition. Am. J. Hum. Genet. 64, 1096–1109 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Grosshans, H. & Filipowicz, W. Molecular biology: the expanding world of small RNAs. Nature 451, 414–416 (2008).

    CAS  PubMed  Google Scholar 

  73. Plagnol, V. et al. Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses. PLoS ONE 3, e2966 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    CAS  PubMed  Google Scholar 

  75. Cheung, V. G. et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nature Genet. 33, 422–425 (2003).

    CAS  PubMed  Google Scholar 

  76. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nature Genet. 35, 131–138 (2003).

    CAS  PubMed  Google Scholar 

  77. Kohane, I. S., Kho, A. T. & Butte, A. J. Microarrays for an Integrative Genomics (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  78. Idaghdour, Y., Storey, J. D., Jadallah, S. J. & Gibson, G. A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan Amazighs. PLoS Genet. 4, e1000052 (2008). Although this paper describes a small study, it shows the profound effects of different environments on gene expression in peripheral blood lymphocytes.

    PubMed  PubMed Central  Google Scholar 

  79. Li, Y. et al. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet. 2, e222 (2006).

    PubMed  PubMed Central  Google Scholar 

  80. Smith, E. N. & Kruglyak, L. Gene–environment interaction in yeast gene expression. PLoS Biol. 6, e83 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Gibson, G. The environmental contribution to gene expression profiles. Nature Rev. Genet. 9, 575–581 (2008).

    CAS  PubMed  Google Scholar 

  82. Reis, B. Y., Butte, A. S. & Kohane, I. S. Extracting knowledge from dynamics in gene expression. J. Biomed. Inform. 34, 15–27 (2001). This paper shows the utility of using time-series measurements of gene expression to identify co-regulated modules of genes.

    CAS  PubMed  Google Scholar 

  83. Schadt, E. E. & Lum, P. Y. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J. Lipid Res. 47, 2601–2613 (2006).

    CAS  PubMed  Google Scholar 

  84. Gudbjartsson, D. F. et al. Many sequence variants affecting diversity of adult human height. Nature Genet. 40, 609–615 (2008).

    CAS  PubMed  Google Scholar 

  85. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13BLK and ITGAMITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    CAS  PubMed  Google Scholar 

  86. Hakonarson, H. et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 57, 1143–1146 (2008).

    CAS  PubMed  Google Scholar 

  87. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  88. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genet. 39, 857–864 (2007).

    CAS  PubMed  Google Scholar 

  89. Plenge, R. M. et al. TRAF1C5 as a risk locus for rheumatoid arthritis — a genomewide study. N. Engl. J. Med. 357, 1199–1209 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Thein, S. L. et al. Intergenic variants of HBS1LMYB are responsible for a major QTL on chromosome 6q23 influencing HbF levels in adults. Proc. Natl Acad. Sci. USA (in the press).

  91. Di Bernardo, M. C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nature Genet. 40, 1204–1210 (2008).

    CAS  PubMed  Google Scholar 

  92. Gardner, T. S., di Bernardo, D., Lorenz, D. & Collins, J. J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    CAS  PubMed  Google Scholar 

  93. Sontag, E., Kiyatkin, A. & Kholodenko, B. N. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20, 1877–1886 (2004).

    CAS  PubMed  Google Scholar 

  94. Li, H. et al. Integrative genetic analysis of transcription modules: towards filling the gap between genetic loci and inherited traits. Hum. Mol. Genet. 15, 481–492 (2006).

    CAS  PubMed  Google Scholar 

  95. Keurentjes, J. J. et al. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc. Natl Acad. Sci. USA 104, 1708–1713 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gerrits, A., Dykstra, B., Otten, M., Bystrykh, L. & de Haan, G. Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny. Immunogenetics 60, 411–422 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. de Koning, D. J., Carlborg, O. & Haley, C. S. The genetic dissection of immune response using gene-expression studies and genome mapping. Vet. Immunol. Immunopathol. 105, 343–352 (2005).

    CAS  PubMed  Google Scholar 

  98. Akey, J. M., Biswas, S., Leek, J. T. & Storey, J. D. On the design and analysis of gene expression studies in human populations. Nature Genet. 39, 807–808; author reply 808–809 (2007).

    CAS  PubMed  Google Scholar 

  99. Spielman, R. S. et al. Common genetic variants account for differences in gene expression among ethnic groups. Nature Genet. 39, 226–231 (2007).

    CAS  PubMed  Google Scholar 

  100. Doss, S., Schadt, E. E., Drake, T. A. & Lusis, A. J. Cis-acting expression quantitative trait loci in mice. Genome Res. 15, 681–691 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hughes, T. R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnol. 19, 342–347 (2001).

    CAS  Google Scholar 

  102. Alberts, R., Terpstra, P., Bystrykh, L. V., de Haan, G. & Jansen, R. C. A statistical multiprobe model for analyzing cis and trans genes in genetical genomics experiments with short-oligonucleotide arrays. Genetics 171, 1437–1439 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    CAS  PubMed  Google Scholar 

  104. Sun, Z., Wigle, D. A. & Yang, P. Non-overlapping and non-cell-type-specific gene expression signatures predict lung cancer survival. J. Clin. Oncol. 26, 877–883 (2008).

    PubMed  Google Scholar 

  105. Walker, B. A. et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 108, 1733–1743 (2006).

    CAS  PubMed  Google Scholar 

  106. Lastowska, M. et al. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene 26, 7432–7444 (2007).

    CAS  PubMed  Google Scholar 

  107. Huang, R. S. et al. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc. Natl Acad. Sci. USA 104, 9758–9763 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005). This paper describes a statistical approach to network analyses and provides a set of software tools for their implementation.

    PubMed  Google Scholar 

  109. Horvath, S. et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl Acad. Sci. USA 103, 17402–17407 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the Wellcome Trust and the EC funded GABRIEL project, the French Ministry of Research and Higher Education and by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Cookson, Liming Liang, Gonçalo Abecasis, Miriam Moffatt or Mark Lathrop.

Related links

Related links

FURTHER INFORMATION

Liming Liang's homepage

Abecasis laboratory homepage (contains programs for genome-scale data analysis)

Catalog of Published Genome-Wide Association Studies

Database of Genomic Variants

dbSNP

D-HaploDB

Genotype-Tissue Expression (GTEx)

H-InvDB

mRNA by SNP Browser v 1.0.1

UniGene

VarySysDB

WaferGen

Glossary

Genome-wide association study

(GWA study). An examination of common genetic variation across the genome designed to identify associations with traits such as common diseases. Typically, several hundred thousand SNPs are interrogated using microarray or bead chip technologies.

Epigenetic

A mitotically stable change in gene expression that depends not on a change in DNA sequence, but on covalent modifications of DNA or chromatin proteins such as histones.

Heritability

(H2). The heritability of an individual trait is estimated by the ratio of genetic variance to total trait variance, so that 0 indicates no genetic effects on trait variance and 1 indicates that all variance is under genetic control.

Major histocompatibility complex

(MHC). A complex locus on chromosome 6p that comprises numerous genes, including the human leukocyte antigen genes, which are involved in the immune response.

Gene Ontology

(GO). A widely used classification system of gene functions and other gene attributes that uses a standardized vocabulary. The system uses a hierarchical organization of concepts (an ontology) with three organizing principles: molecular functions (the tasks done by individual gene products), biological processes (for example, mitosis) and cellular components (examples include the nucleus and the telomere).

Human leukocyte antigen

(HLA). A glycoprotein, encoded at the major histocompatibility complex locus, that is found on the surface of antigen-presenting cells and that present antigen for recognition by helper T cells.

Serial analysis of gene expression

(SAGE). A method for quantitative and simultaneous analysis of a large number of transcripts. Short sequence tags are isolated, concentrated and cloned; their sequencing reveals a gene expression pattern that is characteristic of the tissue or cell type from which the tags were isolated.

Additive genetic effects

A mechanism of quantitative inheritance such that the combined effects of genetic alleles at two or more gene loci are equal to the sum of their individual effects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cookson, W., Liang, L., Abecasis, G. et al. Mapping complex disease traits with global gene expression. Nat Rev Genet 10, 184–194 (2009). https://doi.org/10.1038/nrg2537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing