Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic approaches to crop improvement: responding to environmental and population changes

Key Points

  • The identification of genes responsible for important agricultural traits has been mostly conducted by traditional molecular genetics and by QTL mapping. Recent and future advances in sequence technologies and polymorphism detection will facilitate more trait-oriented QTL studies.

  • Association mapping and selection screens are potentially useful approaches for future mapping studies and for allele mining. The development of applicable resources and studies of population structure will be important for the wider use of these methods.

  • Several genes that are responsible for major QTLs that control the size of grains or number of reproductive organs, thus affecting crop yields, have recently been revealed in rice. These genes encode factors that are involved in cell-division activity.

  • A gene that is responsible for submergence tolerance has been identified and suggested to control metabolic status during submergence.

  • Some genes required for tolerance to soil stresses have been found to encode transporters, the expression of which is spatially regulated. The underlying mechanisms for tolerance seem to be reasonably well conserved in plants.

  • To transfer genetic information conferring advantageous traits to a cultivar of preference, both non-transgenic (QTL-based) approaches and transgenic approaches (involving artificial design) can be used. Allele mining and gene pyramiding, by either hybridization or gene manipulation, will be important for crop improvement.

Abstract

Crop production is threatened by global climate change, and recent demands for crops to produce bio-fuels have started to affect the worldwide supply of some of the most important foods. How can we support a growing human population in such circumstances? One potential solution is the improvement of crops to increase yield from both irrigated and non-irrigated lands, and to create novel varieties that are more tolerant to environmental stresses. Recent progress has been made in the isolation and functional analyses of genes controlling yield and tolerance to abiotic stresses. In addition, promising new methods are being developed for identifying additional genes and variants of interest and putting these to practical use in crop improvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: QTL pyramiding.
Figure 2: Boron transporters.
Figure 3: Mechanistic models of salt tolerance.

Similar content being viewed by others

References

  1. Rosegrant, M. W. & Cline, S. A. Global food security: challenges and policies. Science 302, 1917–1919 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Stocking, M. A. Tropical soils and food security: the next 50 years. Science 302, 1356–1359 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl Acad. Sci. USA 104, 19703–19708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown, M. E. & Funk, C. C. Food security under climate change. Science 319, 580–581 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Chrstensen, J. H. et al. in Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 848–940 (Cambridge University Press, UK and New York, USA, 2007).

    Google Scholar 

  6. Meehl, G. A. et al. in Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 748–845 (Cambridge University Press, UK and New York, USA, 2007).

    Google Scholar 

  7. Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. McCouch, S. R. & Doerge, R. W. QTL mapping in rice. Trends Genet. 11, 482–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Mackay, T. F. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ashikari, M. & Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 11, 344–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Alonso, J. M. & Ecker, J. R. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Rev. Genet. 7, 524–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Jung, K. H., An, G. & Ronald, P. C. Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nature Rev. Genet. 9, 91–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Candela, H. & Hake, S. The art and design of genetic screens: maize. Nature Rev. Genet. 9, 192–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ichikawa, T. et al. The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J. 48, 974–985 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura, H. et al. A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol. Biol. 65, 357–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  CAS  Google Scholar 

  17. Devos, K. M. Updating the 'crop circle'. Curr. Opin. Plant Biol. 8, 155–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kling, J. The search for a sequencing thoroughbred. Nature Biotech. 23, 1333–1335 (2005).

    Article  CAS  Google Scholar 

  19. Liang, C. et al. Gramene: a growing plant comparative genomics resource. Nucleic Acids Res. 36, D947–D953 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, J. K. Plant salt tolerance. Trends Plant Sci. 6, 66–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi-Shinozaki, K. & Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, J. & Buckler, E. S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Flint-Garcia, S. A., Thornsberry, J. M. & Buckler, E. S. Structure of linkage disequilibrium in plants, Annu. Rev. Plant Biol. 54, 357–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, S. et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genet. 39, 1151–1155 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Aranzana, M. J. et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 1, 531–539 (2005).

    Article  CAS  Google Scholar 

  27. Zhao, K. et al. An Arabidopsis example of association mapping in structured samples. PLoS Genet. 3, 71–82 (2007). This paper, as well as references 24 and 26, discusses the feasibility of genome-wide association mapping in plants.

    Article  CAS  Google Scholar 

  28. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006). This paper reports a new statistical method to handle population structure for association mapping.

    Article  CAS  PubMed  Google Scholar 

  29. Buckler, E. & Gore, M. An Arabidopsis haplotype map takes root. Nature Genet. 39, 1056–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Thornsberry, J. M., et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genet. 28, 286–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Palaisa, K. A., Morgante, M., Williams, M. & Rafalski, A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15, 1795–1806 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wong, J. C., Lambert, R. J., Wurtzel, E. T. & Rocheford, T. R. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108, 349–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Harjes, C. E. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330–333 (2008). This paper is an example of a successful study using combinational approaches, with association analysis, QTL mapping and chemical mutagenesis revealing that the variation at the lycE locus has major effects on carotenoid and provitamin A composition in maize grain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yamasaki, M. et al. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17, 2859–2872 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamasaki, M., Wright, S. I. & McMullen, M. D. Genomic screening for artificial selection during domestication and improvement in maize. Ann. Bot. 100, 967–973 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hamblin, M. T. et al. Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics. 173, 953–964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Nakagawa, M., Shimamoto, K. & Kyozuka, J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 29, 743–750 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Suzaki, T. et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131, 5649–5657 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Bommert, P., Satoh-Nagasawa, N., Jackson, D. & Hirano, H. Y. Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol. 46, 69–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kellogg, E. A. Floral displays: genetic control of grass inflorescences. Curr. Opin. Plant Biol. 10, 26–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Frary, A. et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Cong, B., Liu, J. & Tanksley S. D. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc. Natl Acad. Sci. USA 99, 13606–13611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, J., Cong, B. & Tanksley, S. D. Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol. 132, 292–299 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Yoon, D. B. et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor. Appl. Genet. 112, 1052–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Song, X. J., Huang, W., Shi, M., Zhu, M. Z. & Lin, H. X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genet. 39, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Ashikari, M. et al. Cytokinin oxidase regulates rice grain production. Science 309, 741–745 (2005). This paper provides evidence that levels of the phytohormone cytokinin in the inflorescence affect the branching pattern of the panicle, and thus the grain yield, of rice. A QTL pyramiding method in rice is also demonstrated.

    Article  CAS  PubMed  Google Scholar 

  52. Xing, Y. Z., Tang, W. J., Xue, W. Y., Xu, C. G. & Zhang, Q. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor. Appl. Genet. 116, 789–796 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, J. K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamaguchi, T. & Blumwald, E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10, 615–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Valliyodan, B. & Nguyen, H. T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9, 189–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17, 113–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Nelson, D. E. et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc. Natl Acad. Sci. USA 104, 16450–16455 (2007). This paper reports a good example to show that the identification of a transcription factor in model plants can be applied for crop improvement in the field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanchez, A. C., Subudhi, P. K., Rosenow, D. T. & Nguyen, H. T. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol. Biol. 48, 713–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Rivero, R. M. et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl Acad. Sci. USA 104, 19631–19636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harris, K. et al. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J. Exp. Bot. 58, 327–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Landi, P. et al. Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J. Exp. Bot. 58, 319–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Tuberosa, R. & Salvi, S. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 11, 405–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Bernier, J., Kumar, A., Ramaiah, V., Spaner, D. & Atlin, G. A Large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci. 47, 507–516 (2007).

    Article  Google Scholar 

  64. Kumar, R., Venuprasad, R. & Atlin, G. N. Genetic analysis of rainfed lowland rice drought tolerance under naturally occurring stress in eastern India: heritability and QTL effects. Field Crops Res. 103, 42–52 (2007).

    Article  Google Scholar 

  65. Xu, K., Xu, X., Ronald, P. C. & Mackill, D. J. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol. Gen. Genet. 263, 681–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Gutterson, N. & Reuber, T. L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7, 465–471 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006). This study revealed the responsible gene allele for submergence tolerance among natural variations at the Sub1 locus in rice.

    Article  CAS  PubMed  Google Scholar 

  68. Siangliw, M., Toojinda, T., Tragoonrung, S. & Vanavichit, A. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann. Bot. 91, 255–261 (2003).

    Article  CAS  Google Scholar 

  69. Fukao, T., Xu, K., Ronald, P. C. & Bailey-Serres, J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18, 2021–2034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kochian, L. V., Hoekenga, O. A. & Pineros, M. A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55, 459–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Sasaki, T. et al. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Raman, H. et al. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Delhaize, E. et al. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc. Natl Acad. Sci. USA 101, 15249–15254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Magalhaes, J. V. et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genet. 39, 1156–1161 (2007). This paper, and references 71–73, show the gene(s) responsible for organic-acid exudation, which confers aluminium tolerance in crops.

  75. Matoh, T., Kawaguchi, S. & Kobayashi, M. Ubiquity of a borate-rhamnogalacturonan II complex in the cell walls of higher plants. Plant Cell Physiol. 37, 636–640 (1996).

    Article  CAS  Google Scholar 

  76. O'Neill, M. A., Eberhard, S., Albersheim, P. & Darvill, A. G. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294, 846–849 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Shorrocks, V. M. The occurrence and correction of boron deficiency. Plant Soil 193, 121–148 (1997).

    Article  CAS  Google Scholar 

  78. Nable, R. O., Banuelos, G. S. & Paull, J. G. Boron toxicity. Plant Soil 193, 181 (1997).

    Article  CAS  Google Scholar 

  79. Dordas, C., Chrispeels, M. J. & Brown, P. H. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol. 124, 1349–1362 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takano, J. et al. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18, 1498–1509 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Takano, J. et al. Arabidopsis boron transporter for xylem loading. Nature 420, 337–340 (2002). This is the first report of a boron transporter, which led to subsequent findings of related boron transporter genes, which are responsible for tolerance to boron toxicity (see references 86, 88–89).

    Article  CAS  PubMed  Google Scholar 

  82. Miwa, K., Takano, J. & Fujiwara, T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J. 46, 1084–1091 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Takano, J., Miwa, K., Yuan, L., von Wirén, N. & Fujiwara, T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc. Natl Acad. Sci. USA 102, 12276–12281 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakagawa, Y. et al. Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19, 2624–2635 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayes, J. E. & Reid, R. J. Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol. 136, 3376–3382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reid, R. Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol. 48, 1673–1678 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Jefferies, S. P. et al. Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 98, 1293–1303 (1999).

    Article  CAS  Google Scholar 

  88. Sutton, T. et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Miwa, K. et al. Plants tolerant of high boron levels. Science 318, 1417 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Apse, M. P. & Blumwald, E. Na+ transport in plants. FEBS Lett. 581, 2247–2254 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Gaxiola, R. A. et al. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proc. Natl Acad. Sci. USA 98, 11444–11449 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, S. et al. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl Acad. Sci. USA 102, 18830–18835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, H. et al. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol. J. 5, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Dubcovsky, J., Santa Maria, G., Epstein, E., Luo, M. C. & Dvorˇák, J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet. 2, 448–454 (1996).

    Article  Google Scholar 

  95. Maathuis, F. J. M. & Amtmann, A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133 (1999).

    Article  CAS  Google Scholar 

  96. Garthwaite, A. J., von Bothmer, R. & Colmer, T. D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. J. Exp. Bot. 56, 2365–2378 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Sahi, C., Singh, A., Kumar, K. Blumwald, E. & Grover, A. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics 6, 263–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, H. X. et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108, 253–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Ren, Z. H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. 37, 1141–1146 (2005). This is the first study to reveal a gene that is responsible for salt tolerance in monocot cereals by a forward genetics approach. The authors propose that the sodium transporter is involved in long-distance translocation of Na+, which is important for salt tolerance in plants.

    Article  CAS  PubMed  Google Scholar 

  100. Platten, J. D. et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci. 11, 372–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Lindsay, M. P., Lagudah, E. S., Hare, R. A. & Munns, R. (2004). A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol. 31, 1105–1114 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. James, R. A., Davenport, R. J. & Munns, R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol. 142, 1537–1547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, S. et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 142, 1718–1727 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17, 287–291 (1999).

    Article  CAS  Google Scholar 

  105. Lippman, Z. B. & Zamir D. Heterosis: revisiting the magic. Trends Genet. 23, 60–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Semel, Y. et al. Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl Acad. Sci. USA 103, 12981–12986 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Terada, R., Johzuka-Hisatomi, Y., Saitoh, M., Asao, H. & Iida, S. Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol. 144, 846–856 (2007). This report and previous studies by the same group have showed the advance in homologous recombination in rice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Demidchik, V. & Maathuis, F. J. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol. 175, 387–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Horie, T. et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 26, 3003–3014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rus, A. M., Bressan, R. A. & Hasegana, P. M. Unraveling salt tolerance in crops. Nature Genet. 37, 1029–1030 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Maeshima, T. Fujiwara, D. Saisho, M. Ashikari, and T. Hattori for useful suggestions.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Gramene 

ckx2

Gn1a

gs3

gw2

HKT7-A2

OsCKX2

sd1

Sub1

FURTHER INFORMATION

Shin Takeda's homepage

DOE Joint Genome Institute (JGI)

Maizesequence

Maizegenome

Panzea

Phytozome

RiceHapMap

Glossary

Quantitative trait locus

(QTL). A genetic locus controlling a complex trait (such as plant height or grain yield), which is typically affected by more than one gene and also by the environment.

Nearly isogenic line

(NIL). A line carrying an isolated homozygous segment that contains a target QTL of a parental chromosome; other than this QTL, the line has the other parental genetic background.

Ethylene response factor

(ERF). Refers to members of a subfamily of the AP2 transcription factor family, which is unique to the plant lineage. ERF subfamily proteins carry a domain that is conserved in ethylene-responsive element-binding proteins.

Major intrinsic proteins

(MIPs). A large protein family, the members of which act as channels in membranes to facilitate passive transport of small polar molecules such as water, glycerol and urea across the membrane.

Recombinant inbred line

(RIL). A progeny line carrying dispersed homozygous segments of a parental chromosome, formed after several selfed generations of an F2line.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, S., Matsuoka, M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9, 444–457 (2008). https://doi.org/10.1038/nrg2342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing