Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The age of model organisms

Abstract

Nineteenth-century biology embraced the complexity and variety of living things. In the twenty-first century, biologists have returned to these attributes of life with functional and comparative genomics. We could not have done so without the intense study of 'genetically domesticated' model organisms in the twentieth century. The focus on the universality and simplicity of biological systems promoted by these studies is now fading, together, arguably, with the importance of model organisms themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. National Research Council Committee on Models for Biomedical Research (chair Harold Morowitz) Models for Biomedical Research. A New Perspective (National Academy, Washington DC, 1985).

  3. Garrod, A. E. Inborn Errors of Metabolism (Frowde, Hodder and Stoughton, London, 1909).

    Google Scholar 

  4. Sapp, J. Genesis: The Evolution of Biology 159–160 (Oxford Univ. Press, New York, 2003).

    Book  Google Scholar 

  5. Beadle, G. W. & Ephrussi, B. The differentiation of eye pigments in Drosophila as studied by transplantation. Genetics 21, 225–247 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sturtevant, A. H. The vermilion gene and gynandromorphism. Proc. Soc. Exp. Biol. Med. 17, 70–71 (1920).

    Article  Google Scholar 

  7. Davis, R. H. The Microbial Models of Molecular Biology: From Genes to Genomes (Oxford Univ. Press, New York, 2003).

    Book  Google Scholar 

  8. Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist (Columbia Univ. Press, New York, 1942).

    Google Scholar 

  9. Littlefield, J. W. Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145, 709–710 (1964).

    Article  CAS  PubMed  Google Scholar 

  10. Ankeny, R. The natural history of Caenorhabditis elegans research. Nature Rev. Genet. 2, 474–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Somerville, C. & Koornneef, M. A fortunate choice: the history of Arabidopsis as a model plant. Nature Rev. Genet. 3, 883–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  13. Paigen, K. One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981–2002). Genetics 163, 1227–1235 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohler, R. E. Lords of the Fly: Drosophila Genetics and the Experimental Life 43 (Univ. Chicago Press, Chicago, 1994).

    Google Scholar 

  15. Rhoades, M. M. The early years of maize genetics. Ann. Rev. Genet. 18,1–29 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Emerson, R. A. & East, E. M. The inheritance of quantitative characters in maize. Bull. Agric. Expt. Sta. Nebr. 2, 1–120 (1913).

    Google Scholar 

  17. Peterson, P. A. & Bianchi, A. (eds) Maize Genetics and Breeding in the 20th Century (World Scientific Publishing, New Jersey, 1999).

    Book  Google Scholar 

  18. Dunn, L. C. A Short History of Genetics 86 (McGraw-Hill, New York, 1965).

    Google Scholar 

  19. Russell, E. S. A history of mouse genetics. Ann. Rev. Genet. 19, 1–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Paigen, K. One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163, 1–7 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Morgan, T. H., Sturtevant, A. H., Muller, H. J. & Bridges, C. B. The Mechanism of Mendelian Heredity (1915). Reprinted with an introduction by Garland Allen (Johnson Reprint Corporation, New York, 1972).

    Google Scholar 

  22. Muller, H. J. Artificial transmutation of the gene. Science 66, 84–87 (1927).

    Article  CAS  PubMed  Google Scholar 

  23. Shear, C. L. & Dodge, B. O. Life histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group. J. Agr. Res. 34, 1019–1042 (1927).

    Google Scholar 

  24. Davis, R. H. & Perkins, D. D. Neurospora: a model of model organisms. Nature Rev. Genet. 3, 397–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sonneborn, T. Sex, sex inheritance, and sex determination in Paramecium aurelia. Proc. Natl Acad. Sci. USA 23, 378–395 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Margulis, L. Symbiosis in Cell Evolution (W. H. Freeman, San Francisco, 1981).

    Google Scholar 

  27. Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lederberg, J. & Tatum, E. L. Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harb. Symp. Quant. Biol. 11, 113–114 (1946).

    Article  Google Scholar 

  29. Jacob, F. & Wollman, E. L. Sexuality and the Genetics of Bacteria (Academic, New York, 1961).

    Google Scholar 

  30. Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  31. Lindegren, C. C. & Lindegren, G. The cytogene theory. Cold Spring Harb. Symp. Quant. Biol. 11, 115–129 (1946).

    Article  Google Scholar 

  32. Roman, H. The early days of yeast genetics: a personal narrative. Ann. Rev. Genet. 20, 1–12 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Ephrussi, B. in Unités Biologique Douées de Continuité Génétique. Colloques Internationaux du Centre Nationale de la Recherche Scientifique 165–180 (CNRS, Paris, 1949).

    Google Scholar 

  34. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Redei, G. P. Arabidopsis as a genetic tool. Ann. Rev. Genet. 9, 111–127 (1975).

    Article  CAS  PubMed  Google Scholar 

  36. Gillham, N. W. Organelle Genes and Genomes (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  37. Leutwiler, L. S., Houghevans, B. R. & Meyerowitz, E. M. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194, 15–23 (1984).

    Article  CAS  Google Scholar 

  38. Feldmann, K. A. & Marks, M. D. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9 (1989).

    Article  Google Scholar 

  39. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  40. Grunwald, D. J. & Eisen, J. S. Headwaters of the zebrafish — emergence of a new model vertebrate. Nature Rev. Genet. 3, 717–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Sprague, J., Doerry, E., Douglas, S. & Westerfield, M. The Zebrafish Information Network (ZFIN): a resource for genetic, genomic and developmental research. Nucleic Acids Res. 29, 87–90 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Benson, K. R. T. H. Morgan's resistance to the chromosome theory. Nature Rev. Genet. 2, 469–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kimmelman, B. in The Right Tools for the Job. At Work in Twentieth-Century Life Sciences Ch. 7 (eds Clarke, A. E. & Fujimura, J. H.) 198–232 (Princeton Univ. Press, Princeton, 1992).

    Google Scholar 

  45. Morgan, T. H. Sex-limited inheritance in Drosophila. Science 32, 120–122 (1910).

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell, M. B. Aberrant recombination of pyridoxine mutants of Neurospora. Proc. Natl Acad. Sci. USA 41, 215–220 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roman, H. Studies of gene mutation in Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 21, 175–185 (1956).

    Article  CAS  PubMed  Google Scholar 

  48. Palade, G. Intracellular aspects of the process of protein secretion. Science 189, 347–358 (1975).

    Article  CAS  PubMed  Google Scholar 

  49. Silhavy, T. J., Shuman, H. A., Beckwith, J. & Schwartz, M. Use of gene fusions to study outer membrane-protein localization in Escherichia coli. Proc. Natl Acad. Sci. USA 74, 5411–5415 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  51. Klionsky, D. J., Herman, P. K. & Emr, S. D. The fungal vacuole: composition, function, and biogenesis. Microbiol. Revs 54, 266–292 (1990).

    CAS  Google Scholar 

  52. Lew, D. J., Weinert, T. & Pringle, J. R. in The Molecular Biology of the Yeast Saccharomyces, Vol. 3 Cell Cycle and Cell Biology (eds Pringle, J. R., Broach, J. R. & Jones, E. W.) 607–695 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  53. MacNeill, S. A. & Nurse, P. in The Molecular Biology of the Yeast Saccharomyces, Vol. 3 Cell Cycle and Cell Biology (eds Pringle, J. R., Broach, J. R. & Jones, E. W.) 765–825 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  54. Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl Acad. Sci. USA 58, 1112–1119 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lewis, E. B. in Role of Chromosomes in Development (ed. Locke, M.) 231–252 (Adacemic, New York, 1968).

    Google Scholar 

  56. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  57. Dunlap, J. C. Genetics and molecular analysis of circadian rhythms. Ann. Rev. Genet. 30, 579–601 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Chargaff, E. Voices in the labyrinth: dialogues around the study of nature. Perspect. Biol. Med. 18, 251–285 (1975).

    Article  CAS  PubMed  Google Scholar 

  59. Kay, L. The Molecular Vision of Life. Caltech, The Rockefeller Foundation, and the Rise of the New Biology (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  60. Hedges, S. B. The origin and evolution of model organisms. Nature Rev. Genet. 3, 838–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Correns, C. G. Mendel's Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte Deut. Bot. Ges. 18, 158–168 (1900).

    Google Scholar 

  62. Emerson, R. A. & East, E. M. The inheritance of quantitative characters in maize. Bull. Agric. Exp. Stn. Nebr. 2, 1–120 (1913).

    Google Scholar 

  63. Sapp, J. Beyond the Gene. Cytoplasmic Inheritance and the Struggle for Authority in Genetics (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  64. Winge, Ø On haplophase and diplophase in some Saccharomycetes. C. R. Trav. Lab. Carlsberg Ser. Physiol. 21, 77–111 (1935).

    Google Scholar 

  65. Ellis, E. & Delbrück, M. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laibach, F. Arabidopsis thaliana (L.) Heynh. als object für geneticsche und entwicklungsphysiologisches untersuchungen. Bot. Archiv. 44, 439–455 (1943).

    Google Scholar 

  67. Lindegren, C. C. & Lindegren, G. A new method of hybridizing yeast. Proc. Natl Acad. Sci. USA 33, 306–308 (1943).

    Article  Google Scholar 

  68. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lederberg, E. M. & Lederberg, J. Genetic studies of lysogenicity in Escherichia coli. Genetics 38, 51–64 (1952).

    Google Scholar 

  70. Zinder, N. D. & Lederberg, J. Genetic exchange in Salmonella. J. Bacteriol. 64, 679–699 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. The genetics of Aspergillus nidulans. Adv. Genet. 5, 141–238 (1953).

    Article  CAS  PubMed  Google Scholar 

  72. Barratt, R. W., Newmeyer, D., Perkins, D. D. & Garujobst, L. Map construction in Neurospora crassa. Adv. Genet. 6, 1–93 (1954).

    Article  CAS  PubMed  Google Scholar 

  73. Levine, R. P. & Ebersold, W. T. The genetics and cytology of Chlamydomonas. Ann. Rev. Microbiol. 14, 197–216 (1960).

    Article  CAS  Google Scholar 

  74. Gillham, N. W. & Levine, R. P. Studies on the origin of streptomycin resistant mutants in Chlamydomonas reinhardi. Genetics 47, 1463–1474 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Allen, S. L. & Nanney, D. L. An analysis of nuclear differentiation in the selfers of Tetrahymena. Am. Nat. 92, 139–160 (1958).

    Article  Google Scholar 

  76. McKusick, V. Mendelian Inheritance in Man (Johns Hopkins Univ. Press, Baltimore, 1966).

    Google Scholar 

  77. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Streisinger, G., Singer, F., Walker, C., Knauber, D. & Dower, N. Segregation analyses and gene-centromere distances in zebrafish. Genetics 112, 311–319 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Focus on zebrafish. Development 123 (special issue), (1996).

  81. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  82. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  83. Venter, J. C. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  85. Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Model organisms databases

Report on the NIH Model Organism Database Workshop

Glossary

ACCESSORY CHROMOSOMES

Apparently inert, dispensable chromosomes, often called B chromosomes, found in certain races of plants and animals.

APOPTOSIS

Programmed cell death.

ASCOSPORE

A black, thick-walled spore that encloses a haploid nucleus resulting from meiosis in ascomycetous fungi.

ASCUS

A long sac, containing meiotic products (ascospores), which develops following fusion of nuclei of opposite mating type in Ascomycetes.

CELL THEORY

The theory that all living things are cells or aggregations of cells.

CONJUGATION

In bacterial gene exchange, the process of cell-to-cell contact, followed by the linear transfer of all or part of the bacterial chromosome or a plasmid from a donor to a recipient cell.

CYTOGENES

Hypothetical self-replicating, heritable particles that are located in the cytoplasm. Some researchers have proposed that they are autonomous, others that they depend on nuclear genes for their maintenance, and still others that they are copies of genes in the nucleus.

EXPRESSIVITY

The intensity of expression of a mutation in individuals carrying it.

GENE CONVERSION

A non-reciprocal process in which a gene is replaced by its homlogue during meiosis.

HETEROKARYON

In fungi, a mycelium (network of filamentous cells) that contains two or more genetically different nuclear types.

HETEROSIS

A greater fitness of a heterozygote carrying different alleles of the same gene from either of the two corresponding homozygotes.

INTRAGENIC COMPLEMENTATION

The ability of different mutant alleles of the same gene, carried by a heterozygote or heterokaryon, to cooperate to yield a normal or partially normal phenotype.

LYSOSOME

An intracellular compartment of eukaryotic cells in which many macromolecules a re digested.

MACRONUCLEUS

In ciliates, a large nucleus that forms after conjugation as a result of fragmentation and endoreduplication of DNA. It directs the functions of the cell and might change over several generations through loss or amplification of individual groups of genes.

ONE GENE, ONE ENZYME

The view that the specificity of an enzyme is imparted by information in a single corresponding gene.

PARASEXUALITY

The processes by which haploid nuclei of a fungal heterokaryon could fuse and, without undergoing meiosis, yield recombinants.

PARTHENOGENESIS

The development of embryos from unfertilized eggs.

PENETRANCE

A measure of the proportion of genetically similar individuals that show any phenotypic manifestation of a gene that they have in common.

PHYLOGENY

The evolution of organisms by descent from common ancestors.

PLEIOTROPY

The action of a single gene on two or more distinct phenotypic characters.

PSEUDOALLELISM

A term used previously for mutant alleles that failed to complement with one another in heterozygotes, but nevertheless could recombine with one another during meiosis. The term reflected the conflict with the classical picture of alleles, which, it was assumed, could do neither.

SUPPRESSOR MUTATION

A mutation that masks the expression of a non-allelic gene (or mutation) in the same nucleus.

SYSTEMS BIOLOGY

A field, the goal of which is a fully predictive model of cell or organism function, development and behaviour. The area uses gene, RNA and protein microarrays, metabolic determinations, and measurements at other levels of organization over a large range of perturbations. The models would describe the redundancy, modularity and connectivity of function at all levels.

TETRAD ANALYSIS

Isolation and phenotypic analysis of the four products of meiosis of a single meiotic cell.

TRANSDUCTION

The transfer of bacterial genetic material from one cell to another through a bacteriophage protein coat or as part of a bacteriophage DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R. The age of model organisms. Nat Rev Genet 5, 69–76 (2004). https://doi.org/10.1038/nrg1250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing