Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endocrinology of taste receptors

Key Points

  • Despite knowing that overeating is harmful, many people who are overweight are unable to control their food intake

  • The satisfaction, or hedonic response, gained from eating overcomes satiety feedback mechanisms

  • Hormones produced in taste cells in the tongue modify the intensity of taste perception; leptin modifies neurological hedonic responses to eating and the intensity of sweet perception

  • Localization of taste receptors is not restricted to taste cells and the roles of these receptors in other physiological functions are being investigated

  • Obesity and/or overnutrition (chronic excess energy states) might affect taste perception; individuals with obesity require increased amounts of tastants to elicit the same intensity of hedonic response as healthy individuals

  • Insight into how metabolic surgery results in weight loss and understanding of the role of gut microbiota in taste perception might reveal how taste perception and obesity are related

Abstract

Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization and structure of taste buds in the human tongue.
Figure 2: Expression of hormones and their receptors in the three subtypes of taste bud cells that perceive the five prototypic tastants, as well as fat.
Figure 3: Localization of selected hormones along the gut.
Figure 4: Relationship of organ systems with taste-sensing machinery.

Similar content being viewed by others

References

  1. Begg, D. P. & Woods, S. C. The endocrinology of food intake. Nat. Rev. Endocrinol. 9, 584–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. CDC's Division of Nutrition, Physical Activity, and Obesity. Overweight and obesity [online], (2014).

  4. de Graaf, C. Effects of snacks on energy intake: an evolutionary perspective. Appetite 47, 18–23 (2006).

    Article  PubMed  Google Scholar 

  5. Kenny, P. J. Common cellular and molecular mechanisms in obesity and drug addiction. Nat. Rev. Neurosci. 12, 638–651 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Mattes, R. Energy intake and obesity: ingestive frequency outweighs portion size. Physiol. Behav. 134C, 110–118 (2014).

    Article  CAS  Google Scholar 

  7. Popkin, B. M. & Duffey, K. J. Does hunger and satiety drive eating anymore? Increasing eating occasions and decreasing time between eating occasions in the United States. Am. J. Clin. Nutr. 91, 1342–1347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell, S. E. et al. Leptin receptor gene expression and number in the brain are regulated by leptin level and nutritional status. J. Physiol. 587, 3573–3585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berthoud, H.-R., Lenard, N. R. & Shin, A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1266–R1277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagai, T., Kim, D. J., Delay, R. J. & Roper, S. D. Neuromodulation of transduction and signal processing in the end organs of taste. Chem. Senses 21, 353–365 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kinnamon, S. C. & Finger, T. E. A taste for ATP: neurotransmission in taste buds. Front. Cell. Neurosci. 7, 264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. P. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin, Y.-K. et al. Modulation of taste sensitivity by GLP-1 signaling. J. Neurochem. 106, 455–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shin, Y.-K. et al. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS ONE 5, e12729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin, C. et al. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS ONE 6, e24014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukuwatari, T. et al. Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett. 414, 461–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Roper, S. D. Taste buds as peripheral chemosensory processors. Semin. Cell Dev. Biol. 24, 71–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Spector, A. C., Travers, S. P. & Norgren, R. Taste receptors on the anterior tongue and nasoincisor ducts of rats contribute synergistically to behavioral responses to sucrose. Behav. Neurosci. 107, 694–702 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Barlow, L. A. & Northcutt, R. G. Embryonic origin of amphibian taste buds. Dev. Biol. 169, 273–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Medler, K. F., Margolskee, R. F. & Kinnamon, S. C. Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice. J. Neurosci. 23, 2608–2617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vandenbeuch, A., Clapp, T. R. & Kinnamon, S. C. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 9, 1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chandrashekar, J. et al. The cells and peripheral representation of sodium taste in mice. Nature 464, 297–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Pumplin, D. W., Yu, C. & Smith, D. V. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J. Comp. Neurol. 378, 389–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. DeFazio, R. A. et al. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 26, 3971–3980 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida, R. et al. Taste responsiveness of fungiform taste cells with action potentials. J. Neurophysiol. 96, 3088–3095 (2006).

    Article  PubMed  Google Scholar 

  28. Tomchik, S. M., Berg, S., Kim, J. W., Chaudhari, N. & Roper, S. D. Breadth of tuning and taste coding in mammalian taste buds. J. Neurosci. 27, 10840–10848 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 28, 58–63 (2001).

    CAS  PubMed  Google Scholar 

  33. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, P. et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 279, 45068–45075 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Damak, S. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301, 850–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Meyerhof, W. et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35, 157–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Behrens, M., Foerster, S., Staehler, F., Raguse, J.-D. & Meyerhof, W. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J. Neurosci. 27, 12630–12640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindemann, B. Receptors and transduction in taste. Nature 413, 219–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Martin, B. et al. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes 59, 1143–1152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, F. et al. Expression, physiological action, and co-expression patterns of neuropeptide Y in rat taste-bud cells. Proc. Natl Acad. Sci. USA 102, 11100–11105 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elson, A. E. T., Dotson, C. D., Egan, J. M. & Munger, S. D. Glucagon signaling modulates sweet taste responsiveness. FASEB J. 24, 3960–3969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. La Sala, M. S. et al. Modulation of taste responsiveness by the satiation hormone peptide YY. FASEB J. 27, 5022–5033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shigemura, N. et al. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 145, 839–847 (2013).

    Article  CAS  Google Scholar 

  45. Dvoryanchikov, G., Huang, Y. A., Barro-Soria, R., Chaudhari, N. & Roper, S. D. GABA, its receptors, and GABAergic inhibition in mouse taste buds. J. Neurosci. 31, 5782–5791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. LopezJimenez, N. D. et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98, 68–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horio, N. et al. Sour taste responses in mice lacking PKD channels. PLoS ONE 6, e20007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miura, H., Kusakabe, Y. & Harada, S. Cell lineage and differentiation in taste buds. Arch. Histol. Cytol. 69, 209–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N. J. P. & Zuker, C. S. High salt recruits aversive taste pathways. Nature 494, 472–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Castillo, D. et al. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium. Development 141, 2993–3002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, H. X. et al. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance. Dev. Biol. 382, 82–97 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perea-Martinez, I., Nagai, T. & Chaudhari, N. Functional cell types in taste buds have distinct longevities. PLoS ONE 8, e53399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohmoto, M., Matsumoto, I., Yasuoka, A., Yoshihara, Y. & Abe, K. Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol. Cell. Neurosci. 38, 505–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto, K. et al. Genetic tracing of the gustatory neural pathway originating from Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae. J. Neurochem. 119, 497–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sugita, M. & Shiba, Y. Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet. Science 309, 781–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Damak, S., Mosinger, B. & Margolskee, R. F. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neurosci. 9, 96 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Herness, S. & Zhao, F.-L. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud. Physiol. Behav. 97, 581–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Hurtado, M. D. et al. Distribution of Y-receptors in murine lingual epithelia. PLoS ONE 7, e46358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Y. A. & Roper, S. D. Intracellular Ca2+ and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells. J. Physiol. 588, 2343–2350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, P., Shah, B. P., Croasdell, S. & Gilbertson, T. A. Transient receptor potential channel type M5 is essential for fat taste. J. Neurosci. 31, 8634–8642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El-Yassimi, A., Hichami, A., Besnard, P. & Khan, N. A. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J. Biol. Chem. 283, 12949–12959 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Gao, N. et al. Voltage-gated sodium channels in taste bud cells. BMC Neurosci. 10, 20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taruno, A. et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, Y. A., Pereira, E. & Roper, S. D. Acid stimulation (sour taste) elicits GABA and serotonin release from mouse taste cells. PLoS ONE 6, e25471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes. Cell 112, 293–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Sclafani, A., Zukerman, S., Glendinning, J. I. & Margolskee, R. F. Fat and carbohydrate preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1504–R1513 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, D. & Liman, E. R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl Acad. Sci. USA 100, 15160–15165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vandenbeuch, A. et al. Role of the ectonucleotidase NTPDase2 in taste bud function. Proc. Natl Acad. Sci. USA 110, 14789–14794 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dando, R. & Roper, S. D. Acetylcholine is released from taste cells, enhancing taste signalling. J. Physiol. 590, 3009–3017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang, R. B., Waters, H. & Liman, E. R. A proton current drives action potentials in genetically identified sour taste cells. Proc. Natl Acad. Sci. USA 107, 22320–22325 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Herness, S., Zhao, F., Lu, S., Kaya, N. & Shen, T. Expression and physiological actions of cholecystokinin in rat taste receptor cells. J. Neurosci. 22, 10018–10029 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hajnal, A., Covasa, M. & Bello, N. T. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1675–R1686 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Michel, M. C. et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY and pancreatic polypeptide receptors. Pharmacol. Rev. 50, 143–150 (1998).

    CAS  PubMed  Google Scholar 

  75. Shen, T. et al. Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules α-gustducin and T1R2 in rat taste receptor cells. Neuroscience 130, 229–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Armelagos, G. J. Brain evolution, the determinates of food choice, and the omnivore's dilemma. Crit. Rev. Food Sci. Nutr. 54, 1330–1341 (2014).

    Article  PubMed  Google Scholar 

  77. Kinnamon, S. C. & Reynolds, S. D. Cell biology. Using taste to clear the air(ways). Science 325, 1081–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Eberlein, G. A. et al. A new molecular form of PYY: structural characterization of human PYY(3–36) and PYY(1–36). Peptides 10, 797–803 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Kashyap, S. R. et al. Lipid-induced insulin resistance is associated with increased monocyte expression of scavenger receptor CD36 and internalization of oxidized LDL. Obesity (Silver Spring). 17, 2142–2148 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  80. Baillie, A. G., Coburn, C. T. & Abumrad, N. A. Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membr. Biol. 153, 75–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Laugerette, F. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115, 3177–3184 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, W. & Egan, J. M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Fiori, J. L. et al. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62, 3500–3513 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Drucker, D. J. & Yusta, B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol. 76, 561–583 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Martin, B. et al. Modulation of taste sensitivity by GLP-1 signaling in taste buds. Ann. N.Y. Acad. Sci. 1170, 98–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kokrashvili, Z., Mosinger, B. & Margolskee, R. F. T1r3 and α-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann. N.Y. Acad. Sci. 1170, 91–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Geraedts, M. C. P. & Munger, S. D. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds. J. Neurosci. 33, 7559–7564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin, C. et al. Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J. Lipid Res. 53, 2256–2265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Shin, Y.-K. et al. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity. J. Gerontol. A. Biol. Sci. Med. Sci. 67, 336–344 (2012).

    Article  PubMed  Google Scholar 

  91. Aydin, S. et al. Examination of the tissue ghrelin expression of rats with diet-induced obesity using radioimmunoassay and immunohistochemical methods. Mol. Cell. Biochem. 365, 165–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Lin, L. et al. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 10, 996–1010 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Kang, K., Zmuda, E. & Sleeman, M. W. Physiological role of ghrelin as revealed by the ghrelin and GOAT knockout mice. Peptides 32, 2236–2241 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Sinclair, M. S. et al. Oxytocin signaling in mouse taste buds. PLoS ONE 5, e11980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stricker, E. M. & Verbalis, J. G. Central inhibition of salt appetite by oxytocin in rats. Regul. Pept. 66, 83–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Kaplan, L. M., Spindel, E. R., Isselbacher, K. J. & Chin, W. W. Tissue-specific expression of the rat galanin gene. Proc. Natl Acad. Sci. USA 85, 1065–1069 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koegler, F. H. & Ritter, S. Galanin injection into the nucleus of the solitary tract stimulates feeding in rats with lesions of the paraventricular nucleus of the hypothalamus. Physiol. Behav. 63, 521–527 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Seta, Y., Kataoka, S., Toyono, T. & Toyoshima, K. Expression of galanin and the galanin receptor in rat taste buds. Arch. Histol. Cytol. 69, 273–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Karatayev, O., Baylan, J. & Leibowitz, S. F. Increased intake of ethanol and dietary fat in galanin overexpressing mice. Alcohol 43, 571–580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Adams, A. C., Clapham, J. C., Wynick, D. & Speakman, J. R. Feeding behaviour in galanin knockout mice supports a role of galanin in fat intake and preference. J. Neuroendocrinol. 20, 199–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Chevrot, M. et al. Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J. Lipid Res. 54, 2485–2494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kawai, K., Sugimoto, K., Nakashima, K., Miura, H. & Ninomiya, Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc. Natl Acad. Sci. USA 97, 11044–11049 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lu, B., Breza, J. M., Nikonov, A. A., Paedae, A. B. & Contreras, R. J. Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. Physiol. Behav. 107, 533–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Hellekant, G. The blood circulation of the tongue. Front. Oral Physiol. 2, 130–145 (1976).

    Article  CAS  PubMed  Google Scholar 

  106. Eberhard, D., Kragl, M. & Lammert, E. 'Giving and taking': endothelial and β-cells in the islets of Langerhans. Trends Endocrinol. Metab. 21, 457–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Amisten, S., Salehi, A., Rorsman, P., Jones, P. M. & Persaud, S. J. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol. Ther. 139, 359–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Kokrashvili, Z. et al. Endocrine taste cells. Br. J. Nutr. 111 (Suppl. 1), S23–S29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Newsholme, P., Gaudel, C. & McClenaghan, N. H. Nutrient regulation of insulin secretion and β-cell functional integrity. Adv. Exp. Med. Biol. 654, 91–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Sternini, C., Anselmi, L. & Rozengurt, E. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 15, 73–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rozengurt, E. & Sternini, C. Taste receptor signaling in the mammalian gut. Curr. Opin. Pharmacol. 7, 557–562 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Janssen, S. & Depoortere, I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol. Metab. 24, 92–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Shirazi-Beechey, S. P., Daly, K., Al-Rammahi, M., Moran, A. W. & Bravo, D. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br. J. Nutr. 111 (Suppl. 1), S8–S15 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Jang, H.-J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl Acad. Sci. USA 104, 15069–15074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Margolskee, R. F. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl Acad. Sci. USA 104, 15075–15080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Daly, K. et al. Expression of sweet receptor components in equine small intestine: relevance to intestinal glucose transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R199–R208 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, S. V. et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl Acad. Sci. USA 99, 2392–2397 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Prandi, S. et al. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS ONE 8, e82820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Janssen, S. et al. Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc. Natl Acad. Sci. USA 108, 2094–2099 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Glendinning, J. I., Yiin, Y.-M., Ackroff, K. & Sclafani, A. Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol. Behav. 93, 757–765 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, M., Yang, Y., Braunstein, E., Georgeson, K. E. & Harmon, C. M. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Am. J. Physiol. Endocrinol. Metab. 281, E916–E923 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Ozdener, M. H. et al. CD36- and GPR120-mediated Ca2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146, 995–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Sundaresan, S. et al. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 27, 1191–1202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Matsumura, S. et al. GPR expression in the rat taste bud relating to fatty acid sensing. Biomed. Res. 28, 49–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Hirasawa, A., Hara, T., Katsuma, S., Adachi, T. & Tsujimoto, G. Free fatty acid receptors and drug discovery. Biol. Pharm. Bull. 31, 1847–1851 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Tomita, T. et al. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic β cells and implications for insulin secretion. Diabetologia 49, 962–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Duca, F. A., Sakar, Y. & Covasa, M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J. Nutr. Biochem. 24, 1663–1677 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Cartoni, C. et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30, 8376–8382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Godinot, N. et al. Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice. Neuroscience 250, 20–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Galindo, M. M. et al. G protein-coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Ichimura, A., Hirasawa, A., Hara, T. & Tsujimoto, G. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat. 89, 82–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Xiong, Y. et al. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol. Cell. Endocrinol. 369, 119–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Tanaka, T. et al. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch. Pharmacol. 377, 523–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Liou, A. P. et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140, 903–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Yao, B. & Mackie, K. Endocannabinoid receptor pharmacology. Curr. Top. Behav. Neurosci. 1, 37–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Yoshida, R. et al. Endocannabinoids selectively enhance sweet taste. Proc. Natl Acad. Sci. USA 107, 935–939 (2010).

    Article  PubMed  Google Scholar 

  139. Kirkham, T. C., Williams, C. M., Fezza, F. & Di Marzo, V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol. 136, 550–557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gomez, R. et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J. Neurosci. 22, 9612–9617 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. DiPatrizio, N. V., Astarita, G., Schwartz, G., Li, X. & Piomelli, D. Endocannabinoid signal in the gut controls dietary fat intake. Proc. Natl Acad. Sci. USA 108, 12904–12908 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  142. DiPatrizio, N. V., Joslin, A., Jung, K.-M. & Piomelli, D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J. 27, 2513–2520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schicho, R. & Storr, M. A potential role for GPR55 in gastrointestinal functions. Curr. Opin. Pharmacol. 12, 653–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Festi, D. et al. Gut microbiota and metabolic syndrome. World J. Gastroenterol. 20, 16079–16094 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Duca, F. A., Swartz, T. D., Sakar, Y. & Covasa, M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS ONE 7, e39748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Swartz, T. D., Duca, F. A., de Wouters, T., Sakar, Y. & Covasa, M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br. J. Nutr. 107, 621–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Höfer, D. & Drenckhahn, D. Identification of the taste cell G-protein, α-gustducin, in brush cells of the rat pancreatic duct system. Histochem. Cell Biol. 110, 303–309 (1998).

    Article  PubMed  Google Scholar 

  148. Straub, S. G., Mulvaney-Musa, J., Yajima, H., Weiland, G. A. & Sharp, G. W. G. Stimulation of insulin secretion by denatonium, one of the most bitter-tasting substances known. Diabetes 52, 356–364 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Nakagawa, Y. et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 4, e5106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kyriazis, G. A., Soundarapandian, M. M. & Tyrberg, B. Sweet taste receptor signaling in β cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc. Natl Acad. Sci. USA 109, E524–E532 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Dunnigan, M. G. & Ford, J. A. The insulin response to intravenous fructose in relation to blood glucose levels. J. Clin. Endocrinol. Metab. 40, 629–635 (1975).

    Article  CAS  PubMed  Google Scholar 

  152. Le, M. T. et al. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 61, 641–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Nakagawa, Y. et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 4, e5106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T. & Pratley, R. E. Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology 155, 2112–2121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nakagawa, Y. et al. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr. J. 60, 1191–1206 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev. 4, 143–191 (2005).

    Article  PubMed  Google Scholar 

  157. Onoda, K., Ikeda, M., Sekine, H. & Ogawa, H. Clinical study of central taste disorders and discussion of the central gustatory pathway. J. Neurol. 259, 261–266 (2012).

    Article  PubMed  Google Scholar 

  158. Boucher, Y., Simons, C. T., Faurion, A., Azérad, J. & Carstens, E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res. 973, 265–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Hoshi, A. et al. A novel objective sour taste evaluation method based on near-infrared spectroscopy. Chem. Senses 39, 313–322 (2014).

    Article  PubMed  Google Scholar 

  160. Voigt, N. et al. The role of lipolysis in human orosensory fat perception. J. Lipid Res. 55, 870–882 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jones, M. W. et al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Sugita, M., Yamamoto, K., Hirono, C. & Shiba, Y. Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing. Neuroscience 250, 166–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Ohmoto, M., Maeda, N., Abe, K., Yoshihara, Y. & Matsumoto, I. Genetic tracing of the neural pathway for bitter taste in t2r5-WGA transgenic mice. Biochem. Biophys. Res. Commun. 400, 734–738 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Chen, X., Gabitto, M., Peng, Y., Ryba, N. J. P. & Zuker, C. S. A gustotopic map of taste qualities in the mammalian brain. Science 333, 1262–1266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Trivedi, B. P. Neuroscience: hardwired for taste. Nature 486, S7–S9 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Miller, G. Neuroscience. Sweet here, salty there: evidence for a taste map in the mammalian brain. Science 333, 1213 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Barretto, R. P. J. et al. The neural representation of taste quality at the periphery. Nature 15, 373–376 (2015).

    Article  CAS  Google Scholar 

  168. Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222, 282–284 (1969).

    Article  CAS  PubMed  Google Scholar 

  169. Nakano, Y. et al. Feeding-related activity of glucose-and morphine-sensitive neurons in the monkey amygdala. Brain Res. 399, 167–172 (1986).

    Article  CAS  PubMed  Google Scholar 

  170. Anand, B. K., Chhina, G. S., Sharma, K. N., Dua, S. & Singh, B. Activity of single neurons in the hypothalamic feeding centers: effect of glucose. Am. J. Physiol. 207, 1146–1154 (1964).

    Article  CAS  PubMed  Google Scholar 

  171. Shoji, S. Glucose regulation of synaptic transmission in the dorsolateral septal nucleus of the rat. Synapse 12, 322–332 (1992).

    Article  CAS  PubMed  Google Scholar 

  172. Lee, K., Dixon, A. K., Rowe, I. C. M., Ashford, M. L. J. & Richardson, P. J. The high-affinity sulphonylurea receptor regulates KATP channels in nerve terminals of the rat motor cortex. J. Neurochem. 66, 2562–2571 (2002).

    Article  Google Scholar 

  173. Ren, X., Zhou, L., Terwilliger, R., Newton, S. S. & de Araujo, I. E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3, 12 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cong, W. et al. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice. PLoS ONE 8, e70257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Roberts, A., Renwick, A. G., Sims, J. & Snodin, D. J. Sucralose metabolism and pharmacokinetics in man. Food Chem. Toxicol. 38, 31–41 (2000).

    Article  Google Scholar 

  176. Wauson, E. M. et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol. Cell 47, 851–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. De Araujo, I. E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Sclafani, A. Psychobiology of food preferences. Int. J. Obes. Relat. Metab. Disord. 25 (Suppl. 5), S13–S16 (2001).

    Article  PubMed  Google Scholar 

  179. Myers, K. P. & Sclafani, A. Conditioned enhancement of flavor evaluation reinforced by intragastric glucose. II. Taste reactivity analysis. Physiol. Behav. 74, 495–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Ren, X. et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30, 8012–8023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tellez, L. A. et al. Glucose utilization rates regulate intake levels of artificial sweeteners. J. Physiol. 591, 5727–5744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Domingos, A. I. et al. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14, 1562–1568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Maliphol, A. B., Garth, D. J. & Medler, K. F. Diet-induced obesity reduces the responsiveness of the peripheral taste receptor cells. PLoS ONE 8, e79403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lanfer, A. et al. Taste preferences in association with dietary habits and weight status in European children: results from the IDEFICS study. Int. J. Obes. (Lond.) 36, 27–34 (2012).

    Article  CAS  Google Scholar 

  185. Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Esposito, K., Maiorino, M. I., Petrizzo, M., Bellastella, G. & Giugliano, D. Remission of type 2 diabetes: is bariatric surgery ready for prime time? Endocrine http://dx.doi.org/10.1007/s12020-014-0463-z.

  187. Courcoulas, A. P. et al. Long-term outcomes of bariatric surgery: A National Institutes of Health symposium. JAMA Surg. 149, 1323–1329 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Habegger, K. M. et al. GLP-1R responsiveness predicts individual gastric bypass efficacy on glucose tolerance in rats. Diabetes 63, 505–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tichansky, D. S. et al. Decrease in sweet taste in rats after gastric bypass surgery. Surg. Endosc. 25, 1176–1181 (2011).

    Article  PubMed  Google Scholar 

  190. Bueter, M. et al. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol. Behav. 104, 709–721 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Parker, H. E. et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br. J. Pharmacol. 165, 414–423 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mokadem, M., Zechner, J. F., Margolskee, R. F., Drucker, D. J. & Aguirre, V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol. Metab. 3, 191–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Ye, J. et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R352–R362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Miras, A. D. et al. Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am. J. Clin. Nutr. 96, 467–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Pepino, M. Y. et al. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity (Silver Spring) 22, E13–E20 (2014).

    Article  Google Scholar 

  196. Tichansky, D. S., Boughter, J. D. & Madan, A. K. Taste change after laparoscopic Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. Surg. Obes. Relat. Dis. 2, 440–444 (2006).

    Article  PubMed  Google Scholar 

  197. Hao, S., Sternini, C. & Raybould, H. E. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R33–R38 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Jiang, E., Yu, D. & Feng, Z. Subdiaphragmatic vagotomy reduces intake of sweet-tasting solutions in rats. Neural Regen. Res. 8, 1560–1567 (2013).

    PubMed  PubMed Central  Google Scholar 

  199. Mordes, J. P., el Lozy, M., Herrera, M. G. & Silen, W. Effects of vagotomy with and without pyloroplasty on weight and food intake in rats. Am. J. Physiol. 236, R61–R66 (1979).

    CAS  PubMed  Google Scholar 

  200. Furness, J. B. et al. Effects of vagal and splanchnic section on food intake, weight, serum leptin and hypothalamic neuropeptide Y in rat. Auton. Neurosci. 92, 28–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Drewnowski, A., Brunzell, J. D., Sande, K., Iverius, P. H. & Greenwood, M. R. Sweet tooth reconsidered: taste responsiveness in human obesity. Physiol. Behav. 35, 617–622 (1985).

    Article  CAS  PubMed  Google Scholar 

  202. Deglaire, A. et al. Associations between weight status and liking scores for sweet, salt and fat according to the gender in adults (The Nutrinet-Santé study). Eur. J. Clin. Nutr. 69, 40–46 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Intramural Research Program of the NIA/NIH. The authors wish to thank J. O'Connell, S. Walker, M. Rouse and M. Doyle for assistance with manuscript preparation and I. Gonzalez Mariscal for help with designing the figures.

Author information

Authors and Affiliations

Authors

Contributions

S.S.-C.C. and J.M.E. contributed equally to all aspects of the article.

Corresponding author

Correspondence to Josephine M. Egan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, SC., Egan, J. The endocrinology of taste receptors. Nat Rev Endocrinol 11, 213–227 (2015). https://doi.org/10.1038/nrendo.2015.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing