Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Endocrinology research—reflecting on the past decade and looking to the next

Abstract

The inaugural issue of this journal, published in November 2005, included articles on thyroid cancer, type 2 diabetes mellitus, the metabolic syndrome, pituitary adenomas and obesity. 10 years later, we are still publishing articles on these topics (and many others). Although a great deal of progress has been made in our understanding of the pathogenesis, diagnosis and treatment of diseases of the endocrine system over the past 10 years, many challenges still remain. For this Viewpoint, we have asked five of our Advisory Board Members to comment on the progress and challenges from the past 10 years. They were also asked to offer their thoughts on where money should be spent going forward, and their predictions for what advances might be achieved in the next 10 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

    Article  Google Scholar 

  2. Miller, K. M. et al. Current state of type 1 diabetes treatment in the US: updated data from the T1D Exchange clinic registry. Diabetes Care 38, 971–978 (2015).

    Article  Google Scholar 

  3. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  4. Tooley, J. E., Waldron-Lynch, F. & Herold, K. C. New and future immunomodulatory therapy in type 1 diabetes. Trends Mol. Med. 18, 173–181 (2012).

    Article  CAS  Google Scholar 

  5. Talchai, C., Xuan, S., Kitamura, T., DePinho, R. A. & Accili, D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat. Genet. 44, 406–412 (2012).

    Article  CAS  Google Scholar 

  6. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  Google Scholar 

  7. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    Article  CAS  Google Scholar 

  8. Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355, 456–466 (2006).

    Article  CAS  Google Scholar 

  9. Van den Berghe, G. et al. Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 354, 449–461 (2006).

    Article  CAS  Google Scholar 

  10. Russell, S. J. et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 371, 313–325 (2014).

    Article  Google Scholar 

  11. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  Google Scholar 

  12. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  Google Scholar 

  13. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  Google Scholar 

  14. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  Google Scholar 

  15. Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    Article  CAS  Google Scholar 

  16. Teles, M. G. et al. A GPR54-activating mutation in a patient with central precocious puberty. N. Engl. J. Med. 358, 709–715 (2008).

    Article  CAS  Google Scholar 

  17. Raivio, T. et al. Reversal of idiopathic hypogonadotropic hypogonadism. N. Engl. J. Med. 357, 863–873 (2007).

    Article  CAS  Google Scholar 

  18. Ong, K. K. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41, 729–33 (2009).

    Article  CAS  Google Scholar 

  19. Abreu, A. P. et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N. Engl. J. Med. 368, 2467–2475 (2013).

    Article  CAS  Google Scholar 

  20. Metherell, L. A. et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat. Genet. 37, 166–170 (2005).

    Article  CAS  Google Scholar 

  21. Assie, G. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome. N. Engl. J. Med. 369, 2105–2114 (2013).

    Article  CAS  Google Scholar 

  22. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    Article  CAS  Google Scholar 

  23. Rivkees, S. A. & Szarfman, A. Dissimilar hepatotoxicity profiles of propylthiouracil and methimazole in children. J. Clin. Endocrinol. Metab. 95, 3260–3267 (2010).

    Article  CAS  Google Scholar 

  24. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  Google Scholar 

  25. McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    Article  CAS  Google Scholar 

  26. Suga, H. et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480, 57–62 (2011).

    Article  CAS  Google Scholar 

  27. Gleiberman, A. S. et al. Genetic approaches identify adult pituitary stem cells. Proc. Natl Acad. Sci. USA 105, 6332–6337 (2008).

    Article  CAS  Google Scholar 

  28. Rizzoti, K., Akiyama, H. & Lovell-Badge, R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13, 419–432 (2013).

    Article  CAS  Google Scholar 

  29. Budry, L. et al. Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc. Natl Acad. Sci. USA 108, 12515–12520 (2011).

    Article  CAS  Google Scholar 

  30. Hosoyama, T. et al. A postnatal Pax7 progenitor gives rise to pituitary adenomas. Genes Cancer 1, 388–402 (2010).

    Article  CAS  Google Scholar 

  31. Chesnokova, V. et al. p21(Cip1) restrains pituitary tumor growth. Proc. Natl Acad. Sci. USA 105, 17498–17503 (2008).

    Article  CAS  Google Scholar 

  32. Fukuoka, H. et al. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J. Clin. Invest. 121, 4712–4721 (2011).

    Article  CAS  Google Scholar 

  33. Reincke, M. et al. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat. Genet. 47, 31–38 (2015).

    Article  CAS  Google Scholar 

  34. Vierimaa, O. et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312, 1228–1230 (2006).

    Article  CAS  Google Scholar 

  35. Daly, A. F., Trivellin, G. & Stratakis, C. A. Gigantism, acromegaly, and GPR101 mutations. N. Engl. J. Med. 372, 1265 (2015).

    PubMed  Google Scholar 

  36. Colao, A. et al. A 12-month phase 3 study of pasireotide in Cushing's disease. N. Engl. J. Med. 366, 914–924 (2012).

    Article  CAS  Google Scholar 

  37. Neggers, S. J. et al. Long-term efficacy and safety of pegvisomant in combination with long-acting somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 99, 3644–3652 (2014).

    Article  CAS  Google Scholar 

  38. Cuevas-Ramos, D. et al. A structural and functional acromegaly classification. J. Clin. Endocrinol. Metab. 100, 122–131 (2015).

    Article  CAS  Google Scholar 

  39. International Diabetes Federation. IDF Diabetes Atlas Sixth Edition [online], (2014).

  40. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  41. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  42. Gerstein, H. C. et al. Action to Control Cardiovascular Risk in Diabetes Study Group Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  CAS  Google Scholar 

  43. Yudkin, J. S., Richter, B. & Gale, E. A. Intensified glucose lowering in type 2 diabetes: time for a reappraisal. Diabetologia 53, 2079–2085 (2010).

    Article  CAS  Google Scholar 

  44. Raz, I. et al. Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care Editors' Expert Forum. Diabetes Care 36, 1779–1788 (2013).

    Article  CAS  Google Scholar 

  45. Haugen, B. R. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid (in press).

  46. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

  47. Reed, J. C. & Herold, K. C. Thinking bedside at the bench: the NOD mouse model of T1DM. Nat. Rev. Endocrinol. 11, 308–314 (2015).

    Article  CAS  Google Scholar 

  48. Bero, L. Industry sponsorship and research outcome. A Cochrane Review. JAMA Intern. Med. 173, 580–581 (2013).

    Article  Google Scholar 

  49. Ito, Y., Nikiforov, Y., Schlumberger, M. & Vigneri, R. Increasing incidence of thyroid cancer: controversies explored. Nat. Rev. Endocrinol. 9, 178–184 (2013).

    Article  CAS  Google Scholar 

  50. Brassard, M. et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J. Clin. Endocrinol. Metab. 96, 1352–1359 (2011).

    Article  CAS  Google Scholar 

  51. Xing, M. M., Haugen, B. & Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet 381, 1058–1069 (2013).

    Article  CAS  Google Scholar 

  52. Durante, C. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91, 2892–2899 (2006).

    Article  CAS  Google Scholar 

  53. Schlumberger, M. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer: recommendations by an international expert panel. Lancet Diabetes Endocrinol. 2, 356–358 (2014).

    Article  Google Scholar 

  54. Brose, M. S. et al. A randomized trial of sorafenib for 131I-refractory differentiated thyroid cancer. Lancet 384, 319–328 (2014).

    Article  CAS  Google Scholar 

  55. Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015).

    Article  Google Scholar 

  56. Herold, K., Vignali, D. A., Cooke, A. & Bluestone, J. Type 1 diabetes: Translating mechanistic observations into effective clinical outcomes. Nat. Rev. Immunol. 13, 243–256 (2013).

    Article  CAS  Google Scholar 

  57. Gadelha, M. R. et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2, 875–884 (2014).

    Article  CAS  Google Scholar 

  58. American Diabetes Association. Economic costs of diabetes in the US in 2012. Diabetes Care 36, 1033–1046 (2013).

  59. Ali, M. K. et al. Achievement of goals in U. S. diabetes care, 1999–2010. N. Engl. J. Med. 368, 1613–1624 (2013).

    Article  CAS  Google Scholar 

  60. Mallick, U. et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N. Engl. J. Med. 366, 1674–1685 (2012).

    Article  CAS  Google Scholar 

  61. Schlumberger, M. et al. Strategies of radioiodine ablation in low-risk thyroid cancer patients. N. Engl. J. Med. 366, 1663–1673 (2012).

    Article  CAS  Google Scholar 

  62. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 368, 623–632 (2013).

    Article  CAS  Google Scholar 

  63. Mohan, J. F., Petzold, S. J. & Unanue, E. R. Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J. Exp. Med. 208, 2375–2383 (2011).

    Article  CAS  Google Scholar 

  64. Stadinski, B. D. et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc. Natl Acad. Sci. USA 107, 10978–10983 (2010).

    Article  CAS  Google Scholar 

  65. Herold, K. C. et al. β cell death and dysfunction during type 1 diabetes development in at-risk individuals. J. Clin. Invest. 125, 1163–1173 (2015).

    Article  Google Scholar 

  66. Mallone, R. et al. Immunology of Diabetes Society T-Cell Workshop: HLA class I tetramer-directed epitope validation initiative T-Cell Workshop Report-HLA Class I Tetramer Validation Initiative. Diabetes Metab. Res. Rev. 27, 720–726 (2011).

    Article  CAS  Google Scholar 

  67. Cariboni A. et al. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J. Clin. Invest. 125, 2413–2428 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this manuscript.

Corresponding authors

Correspondence to Kevan C. Herold, Joseph A. Majzoub, Shlomo Melmed, Merri Pendergrass or Martin Schlumberger.

Ethics declarations

Competing interests

J.A.M. is named as an inventor on two patent applications related to obesity. S.M. has been a scientific consultant for Chiasma and Isis; has received research grant support from Ipsen and Pfizer; and has been an education consultant for Novartis. M.S. has received research support and honoraria and has been on advisory boards for AstraZeneca, Bayer, Eisai and Exelixis-Sobi. K.C.H. and M.P. declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herold, K., Majzoub, J., Melmed, S. et al. Endocrinology research—reflecting on the past decade and looking to the next. Nat Rev Endocrinol 11, 672–680 (2015). https://doi.org/10.1038/nrendo.2015.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.164

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing