Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetes and its comorbidities—where East meets West

Abstract

Fetal programming associated with in utero exposure to maternal stress is thought to alter gene expression, resulting in phenotypes that promote survival in a pathogen-rich and nutrient-poor environment but substantially increase the risk of cardiovascular, metabolic and renal disorders (such as diabetes mellitus) in adults with obesity. These (epi)genetic phenomena are modified by environmental and socioeconomic factors, resulting in multiple subphenotypes and clinical consequences. In individuals from areas undergoing rapid economic development, which is associated with a transition from communicable to noncommunicable diseases, an efficient innate immune response can exaggerate obesity-associated inflammation. By contrast, in individuals with a genetic predisposition to autoimmune or monogenic diabetes mellitus, obesity can lead to atypical presentation of diabetes mellitus, termed 'double diabetes mellitus'. The increasingly young age at diagnosis of diabetes mellitus in developing countries results in prolonged exposure to glucolipotoxicity, low-grade inflammation and increased oxidative stress, which put enormous strain on pancreatic β cells and renal function. These conditions create a metabolic milieu conducive to cancer growth. This Review discusses how rapid changes in technology and human behaviour have brought on the global epidemic of metabolic diseases, and suggests that solutions will be based on using system change, technology and behavioural strategies to combat this societal-turned-medical problem.

Key Points

  • Diabetes mellitus in Asian populations has a younger age of onset and is accompanied by more visceral fat and a lower BMI than in western populations

  • Genotypes and phenotypes that promote survival in an energy-scarce, pathogen-rich environment can induce obesity and maladaptive inflammatory responses that exacerbate β-cell dysfunction in regions undergoing rapid economic and societal changes

  • High rates of smoking and hepatitis B infection in Asian populations result in chronic low-grade inflammation, which increases the risk of β-cell dysfunction, chronic kidney disease and cancer

  • A multifaceted approach comprising system change, technological advances and behavioural strategies might provide approaches to combat obesity, reduce inflammation and preserve β-cell function in the global epidemic of diabetes mellitus

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Juonala, M. et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 365, 1876–1885 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Tirosh, A. et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N. Engl. J. Med. 364, 1315–1325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nishi, Y. et al. Insulin secretion and insulin sensitivity in Japanese subjects with impaired fasting glucose and isolated fasting hyperglycemia. Diabetes Res. Clin. Pract. 70, 46–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. King, G. L. et al. Understanding and addressing unique needs of diabetes in Asian Americans, native Hawaiians, and Pacific Islanders. Diabetes Care 35, 1181–1188 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Emerging Risk Factors Collaboration et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

  6. Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Misra, A. & Khurana, L. Obesity and the metabolic syndrome in developing countries. J. Clin. Endocrinol. Metab. 93 (Suppl. 1), S9–S30 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ramachandran, A., Ma, R. C. W. & Snehalatha, C. Diabetes in Asia. Lancet 375, 408–418 (2010).

    Article  PubMed  Google Scholar 

  9. Yoon, K. H. et al. Epidemic obesity and type 2 diabetes in Asia. Lancet 368, 1681–1688 (2006).

    Article  PubMed  Google Scholar 

  10. McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho, Y. S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Kingsmore, S. F., Lindquist, I. E., Mudge, J., Gessler, D. D. & Beavis, W. D. Genome-wide association studies: progress and potential for drug discovery and development. Nat. Rev. Drug Discov. 7, 221–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5, 276–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Volkmar, M. et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 31, 1405–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Toperoff, G. et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum. Mol. Genet. 21, 371–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawless, M. W., O'Byrne, K. J. & Gray, S. G. Histone deacetylase inhibitors target diabetes via chromatin remodeling or as chemical chaperones? Curr. Diabetes Rev. 5, 201–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Najafi-Shoushtari, S. H. MicroRNAs in cardiometabolic disease. Curr. Atheroscler. Rep. 13, 202–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, R. C. W. & Chan, J. C. N. Pregnancy and diabetes scenario around the world: China. Int. J. Gynecol. Obstet. 104 (Suppl. 1), S42–S45 (2009).

    Article  Google Scholar 

  22. Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y. et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 59, 2400–2406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, Z. S. K. et al. Plasma insulin, growth hormone, cortisol and central obesity among young Chinese Type 2 diabetic patients. Diabetes Care 22, 1450–1457 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, Z. S. K. et al. Urinary epinephrine and norepinephrine with obesity, insulin and the metabolic syndrome in Hong Kong Chinese. Metabolism 50, 135–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Tong, P. C. Y. et al. Low testosterone and insulin-like growth factor-I but high C-reactive protein are independent predictors for metabolic syndrome In Chinese middle-aged men with a family history of type 2 diabetes. J. Clin. Endocrinol. Metab. 90, 6418–6423 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Sea, M. M., Woo. J., Tong, P. C., Chow, C. C. & Chan, J. C. Associations between food variety and body fatness in Hong Kong Chinese adults. J. Am. Coll. Nutr. 23, 404–413 (2004).

  28. Kong, A. P. et al. Association between physical activity and cardiovascular risk in Chinese youth independent of age and pubertal stage. BMC Public Health 10, 303 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dabelea, D. et al. Etiological approach to characterization of diabetes type: the SEARCH for Diabetes in Youth Study. Diabetes Care 34, 1628–1633 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ng, M. C. et al. Familial early-onset type 2 diabetes in Chinese patients: obesity and genetics have more significant roles than autoimmunity. Diabetes Care 24, 663–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, J. et al. Study on prevalence of latent autoimmune diabetes in adults and its relationship with metabolic syndrome [Chinese]. Zhonghua Yi Xue Za Zhi 89, 1250–1254 (2009).

    CAS  PubMed  Google Scholar 

  32. Chan, J. C. & Ng, M. C. Lessons learned from young-onset diabetes in China. Curr. Diab. Rep. 3, 101–107 (2003).

    Article  PubMed  Google Scholar 

  33. Lan, H. et al. Anti-inflammatory effects of exendin-4, a glucagon-like peptide-1 analog, on human peripheral lymphocytes in patients with type 2 diabetes. J. Diabetes Invest. (in press).

  34. Mendall, M. A. Inflammatory responses and coronary heart disease. BMJ 316, 953–954 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pickup, J. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813–823 (2004).

    Article  PubMed  Google Scholar 

  36. Pozzilli, P. & Guglielmi, C. Double diabetes: a mixture of type 1 and type 2 diabetes in youth. Endocr. Dev. 14, 151–166 (2009).

    Article  PubMed  Google Scholar 

  37. Patterson, C. C., Dahlquist, G. G., Gyurus, E., Green, A. & Soltesz, G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373, 2027–2033 (2009).

    Article  PubMed  Google Scholar 

  38. Patterson, C. et al. Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55, 2142–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Wong, G. W. K., Leung, S. S. F. & Opphenheimer, S. J. Epidemiology of IDDM in southern Chinese children in Hong Kong. Diabetes Care 16, 926–928 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Kong, A. P. S. & Chan, J. C. N. in Textbook of Diabetes 4th edn (eds Holt, R. I., Cockram, C. S., Flyvberg, A. & Goldstein, B. J.) 152–159 (Blackwell Publishing, 2010).

    Google Scholar 

  41. Butler, A. E. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Yoon, K. H. et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 88, 2300–2308 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Sakuraba, H. et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45, 85–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, H. L. et al. Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes 52, 2759–2766 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, H. L. et al. Amyloid oligomers in diabetic and nondiabetic human pancreas. Transl. Res. 153, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Sheu, W. H. et al. Effect of weight loss on proinflammatory state of mononuclear cells in obese women. Obesity (Silver Spring) 16, 1033–1038 (2008).

    Article  CAS  Google Scholar 

  47. Hofsø, D. et al. Beta cell function after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur. J. Endocrinol. 164, 231–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morrish, N. J., Wang, S., Stevens, L. K., Fuller, J. H. & Keen, H. Mortality and causes of death in the WHO Multinational Survey of Vascular Diseases in Diabetes. Diabetologia 44 (Suppl. 2), S14–S21 (2001).

    Article  PubMed  Google Scholar 

  49. Chi, Z., Lee, E., Lu, M., Keen, H. & Bennett, P. Vascular disease prevalence in diabetic patients in China: standardised comparison with the 14 centres in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44 (Suppl. 2), S82–S86 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, X. et al. Development and validation of stroke risk equation for Hong Kong Chinese patients with type 2 diabetes: the Hong Kong Diabetes Registry. Diabetes Care 30, 65–70 (2007).

    Article  PubMed  Google Scholar 

  51. Yang, X. et al. Development and validation of a total coronary heart disease risk score in type 2 diabetes mellitus. Am. J. Cardiol. 101, 596–601 (2008).

    Article  PubMed  Google Scholar 

  52. Anderson, K. M., Castelli, W. P. & Levy, D. Cholesterol and mortality—30 years of follow-up from the Framingham Study. JAMA 257, 2176–2180 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Kannel, W. B. et al. Systolic blood pressure, arterial rigidity, and risk of stroke. The Framingham study. JAMA 245, 1225–1229 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Chronic Kidney Disease Prognosis Consortium et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

  55. Wu, A. Y. et al. An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic patients: the MicroAlbuminuria Prevalence (MAP) Study. Diabetologia 48, 17–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Parving, H. H. et al. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 69, 2057–2063 (2006).

    Article  PubMed  Google Scholar 

  57. Lora, C. M. et al. Progression of CKD in Hispanics: potential roles of health literacy, acculturation, and social support. Am. J. Kidney Dis. 58, 282–290 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wen, C. P. et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371, 2173–2182 (2008).

    Article  PubMed  Google Scholar 

  59. Clarke, P. M. et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: a multicountry comparative analysis. PLoS Med. 7, e1000236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chan, J. C. et al. The Complexity of Vascular and Non-Vascular Complications of Diabetes: The Hong Kong Diabetes Registry. Curr. Cardiovasc. Risk Rep. 5, 230–239 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Action to Control Cardiovascular Risk in Diabetes Study Group et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

  62. ADVANCE Collaborative Group et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

  63. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  64. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patient with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

  65. Kong, A. P. et al. Assessment of glomerular filtration rate in addition to albuminuria is important in managing type II diabetes. Kidney Int. 69, 383–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, F., Ye, P., Luo, L., Xiao, W. & Wu, H. Association of risk factors for cardiovascular disease and glomerular filtration rate: a community-based study of 4,925 adults in Beijing. Nephrol. Dial. Transplant. 25, 3924–3931 (2010).

    Article  PubMed  Google Scholar 

  67. Jia, W. et al. Prevalence and risk factors of albuminuria and chronic kidney disease in Chinese population with type 2 diabetes and impaired glucose regulation: Shanghai diabetic complications study (SHDCS). Nephrol. Dial. Transplant. 24, 3724–3731 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Lou, Q. et al. Chronic kidney disease and associated cardiovascular risk factors in Chinese with type 2 diabetes. Diabetes Metab. J. 36, 433–442 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shan, Y., Zhang, Q., Liu, Z., Hu, X. & Liu, D. Prevalence and risk factors associated with chronic kidney disease in adults over 40 years: a population study from Central China. Nephrology (Carlton) 15, 354–361 (2010).

    Article  CAS  Google Scholar 

  70. Buckalew, V. M. Jr & Freedman, B. I. Effects of race on albuminuria and risk of cardiovascular and kidney disease. Expert Rev. Cardiovasc. Ther. 9, 245–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sabanayagam, C. et al. Ethnic disparities in prevalence and impact of risk factors of chronic kidney disease. Nephrol. Dial. Transplant. 25, 2564–2570 (2010).

    Article  PubMed  Google Scholar 

  72. Ong-Ajyooth, L., Vareesangthip, K., Khonputsa, P. & Aekplakorn, W. Prevalence of chronic kidney disease in Thai adults: a national health survey. BMC Nephrol. 10, 35 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito, S. Cardiorenal connection in chronic kidney disease. Clin. Exp. Nephrol. 16, 8–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Luk, A. O. et al. Predictive role of polymorphisms in interleukin-5 receptor alpha-subunit, lipoprotein lipase, integrin A2 and nitric oxide synthase genes on ischemic stroke in type 2 diabetes—An 8-year prospective cohort analysis of 1327 Chinese patients. Atherosclerosis 215, 130–135 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, Y. et al. Independent predictive roles of eotaxin Ala23Thr, paraoxonase 2 Ser311Cys and beta-adrenergic receptor Trp64Arg polymorphisms on cardiac disease in type 2 diabetes—an 8-year prospective cohort analysis of 1297 patients. Diabet. Med. 27, 376–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Y. et al. Predictive role of multilocus genetic polymorphisms in cardiovascular disease and inflammation-related genes on chronic kidney disease in type 2 diabetes—an 8-year prospective cohort analysis of 1163 patients. Nephrol. Dial. Transplant. 27, 190–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y. et al. Prognostic effect of insertion/deletion polymorphism of the ace gene on renal and cardiovascular clinical outcomes in Chinese patients with type 2 diabetes. Diabetes Care 28, 348–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. So, W. Y. et al. Aldose reductase genotypes and cardiorenal complications: an 8-year prospective analysis of 1,074 type 2 diabetic patients. Diabetes Care 31, 2148–2153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Katakami, N. et al. Combined effect of oxidative stress-related gene polymorphisms on atherosclerosis. Biochem. Biophys. Res. Commun. 379, 861–865 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Yamasaki, Y. et al. Combination of multiple genetic risk factors is synergistically associated with carotid atherosclerosis in Japanese subjects with type 2 diabetes. Diabetes Care 29, 2445–2451 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Mooyaart, A. L. et al. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54, 544–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Katakami, N. et al. Accumulation of gene polymorphisms related to plaque disruption and thrombosis is associated with cerebral infarction in subjects with type 2 diabetes. Diabetes Care 33, 390–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. de Boer, I. H. et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305, 2532–2539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ritz, E., Rychlik, I., Locatelli, F. & Halimi, S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am. J. Kidney Dis. 34, 795–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Luk, A. O. Y. et al. Metabolic syndrome predicts new onset of chronic kidney disease in 5,829 patients with type 2 diabetes: a 5-year prospective analysis of the Hong Kong Diabetes Registry. Diabetes Care 31, 2357–2361 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ma, R. C. et al. Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA 304, 881–889 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Thomas, G. et al. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 6, 2364–2373 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chan, W. B. et al. The associations of body mass index, C-peptide and metabolic status in Chinese type 2 diabetic patients. Diabet. Med. 21, 349–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Boyko, E. J., Fujimoto, W. Y., Leonetti, D. L. & Newell-Morris, L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care 23, 465–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Iseki, K. Predictors of diabetic end-stage renal disease in Japan. Nephrology (Carlton) 10 (Suppl.), S2–S6 (2005).

    Article  Google Scholar 

  91. Saiki, A. et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int. J. Obes. (Lond.) 29, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  92. Ahima, R. S. & Flier, J. S. Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Schrijvers, B. F., De Vriese, A. S. & Flyvbjerg, A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 25, 971–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Axelrod, J. & Reisine, T. D. Stress hormones: their interaction and regulation. Science 224, 452–459 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. Masuzaki, H. et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J. Clin. Invest. 112, 83–90 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tong, P. C. et al. White blood cell count is associated with macro– and microvascular complications in Chinese patients with type 2 diabetes. Diabetes Care 27, 216–222 (2004).

    Article  PubMed  Google Scholar 

  98. Lao, T. T., Chan, B. C., Leung, W. C., Ho, L. F. & Tse, K. Y. Maternal hepatitis B infection and gestational diabetes mellitus. J. Hepatol. 47, 46–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Cheng, A. Y. et al. Chronic hepatitis B viral infection independently predicts renal outcome in type 2 diabetic patients. Diabetologia 49, 1777–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Crook, E., Penumalee, S., Gavini, B. & Filippova, K. Hepatitis C is a predictor of poorer renal survival in diabetic patients. Diabetes Care 28, 2187–2191 (2005).

    Article  PubMed  Google Scholar 

  101. Wong, C. K. et al. Aberrant cxpression of soluble co-stimulatory molecules and adhesion molecules in type 2 diabetic patients with nephropathy. J. Clin. Immunol. 28, 36–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Wong, C. K. et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin. Exp. Immunol. 149, 123–131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao, H. L., Tong, P. C., Lai, F. M., Tomlinson, B. & Chan, J. C. Association of glomerulopathy with the 5'-end polymorphism of the aldose reductase gene and renal insufficiency in type 2 diabetic patients. Diabetes 53, 2984–2991 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Wong, T. Y. et al. Renal outcome in type 2 diabetic patients with or without coexisting nondiabetic nephropathies. Diabetes Care 25, 900–905 (2002).

    Article  PubMed  Google Scholar 

  105. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med. 342, 381–389 (2000).

  107. ACCORD Study Group et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

  108. McCarty, M. F., Barroso-Aranda, J. & Contreras, F. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction—clinical implications. Med. Hypotheses 74, 596–600 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Yamagishi, S., Fukami, K., Ueda, S. & Okuda, S. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr. Drug Targets 8, 952–959 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Nishikawa, D. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404, 787–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Cooper, M. E. & Jandeleit-Dahm, K. A. Lipids and diabetic renal disease. Curr. Diab. Rep. 5, 445–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Baum, L. et al. Effect of hepatic lipase −514C->T polymorphism and its interactions with apolipoprotein C3 −482C->T and apolipoprotein E exon 4 polymorphisms on the risk of nephropathy in chinese type 2 diabetic patients. Diabetes Care 28, 1704–1709 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Chan, J. C. et al. Effects of structured versus usual care on renal endpoint in type 2 diabetes: the SURE study: a randomized multi-centre translational study. Diabetes Care 32, 977–982 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 359, 2105–2120 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, X. L. et al. Associations of hyperglycaemia and insulin usage with the risk of cancer in type 2 diabetes: the Hong Kong diabetes registry. Diabetes 59, 1254–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang, X. et al. Diabetes and cancer: the mechanistic implications of epidemiological analyses from the Hong Kong Diabetes Registry. Diabetes Metab. Res. Rev. 28, 379–387 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. So, W. Y. et al. Risk factors in V-shaped risk associations with all-cause mortality in type 2 diabetes-The Hong Kong Diabetes Registry. Diabetes Metab. Res. Rev. 24, 238–246 (2008).

    Article  PubMed  Google Scholar 

  120. Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Chan, J. C. et al. Multifaceted determinants for achieving glycemic control: the International Diabetes Management Practice Study (IDMPS). Diabetes Care 32, 227–233 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. So, W. Y. & Chan, J. C. N. in Textbook of Diabetes 4th edn (eds Holt, R. I., Cockram, C. S., Flyvberg, A. & Goldstein, B. J.) 969–983 (Blackwell Publishing, 2010).

    Book  Google Scholar 

  123. Fisher, E. B., Chan, J. C., Nan, H., Sartorius, N. & Oldenburg, B. Co-occurrence of diabetes and depression: conceptual considerations for an emerging global health challenge. J. Affect. Disord. 142 (Suppl.), S56–S66 (2012).

    Article  PubMed  Google Scholar 

  124. The ORIGIN Trial Investigators et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 367, 319–328 (2012).

  125. Chan, J. C. What have we learnt from recent blood glucose lowering megatrials. J. Diabetes Invest. 2, 1–5 (2011).

    Article  Google Scholar 

  126. Deveugele, M., Derese A., van den Brink-Muinen, A., Bensing, J. & De Maeseneer, J. Consultation length in general practice: cross sectional study in six European countries. BMJ 325, 72 (2002).

    Article  Google Scholar 

  127. Wagner, E. H. & Groves, T. Care for chronic diseases. BMJ 325, 913–914 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Katon, W. J. et al. Collaborative care for patients with depression and chronic illnesses. N. Engl. J. Med. 363, 2611–2620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Funnell, M. M. & Anderson, R. M. Changing office practice and health care systems to facilitate diabetes self-management. Curr. Diab. Rep. 3, 127–133 (2003).

    Article  PubMed  Google Scholar 

  130. Tricco, A. C. et al. Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis. Lancet 379, 2252–2261 (2012).

    Article  PubMed  Google Scholar 

  131. Fisher, E. B., Earp, J. A., Maman, S. & Zolotor, A. Cross-cultural and international adaptation of peer support for diabetes management. Fam. Pract. 27 (Suppl. 1), i6–i16 (2010).

    Article  PubMed  Google Scholar 

  132. Heisler, M., Vijan, S., Makki, F. & Piette, J. D. Diabetes control with reciprocal peer support versus nurse care management: a randomized trial. Ann. Intern. Med. 153, 507–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chan, J. et al. Peer Support (PEARL) reduced hospitalizations in high risk type 2 diabetic patients receiving structured care (JADE). J. Diabetes Invest. 3, 133 (2012).

    Google Scholar 

  134. Sartarius, N. & Cimino, L. The Co-Occurrence of Diabetes and Depression: An example of the worldwide epidemic of comorbidity of mental and physical illness. Ann. Acad. Med. Singapore 41, 430–431 (2012).

    Google Scholar 

  135. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  136. So, W. Y. et al. Effects of protocol-driven care versus usual outpatient clinic care on survival rates in patients with type 2 diabetes. Am. J. Manag. Care 9, 606–615 (2003).

    PubMed  Google Scholar 

  137. Leung, W. et al. The reonprotective effects of structured care in a clinical trial setting in type 2 diabetic patients with nephropathy. Nephrol. Dial. Transplant. 19, 2519–2525 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Wu, J. Y. et al. Effectiveness of telephone counselling by a pharmacist in reducing mortality in patients receiving polypharmacy: randomised controlled trial. BMJ 333, 522 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Leung, W. Y., So, W. Y., Tong, P. C., Chan, N. N. & Chan, J. C. N. Effects of structured care by a pharmacist-diabetes specialist team in patients with type 2 diabetic nephropathy. Am. J. Med. 118, 1414 (2005).

    Article  PubMed  Google Scholar 

  140. Ko, G. T. et al. From design to implementation–the Joint Asia Diabetes Evaluation (JADE) program: a descriptive report of an electronic web-based diabetes management program. BMC Med. Inform. Decis. Mak. 10, 26 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study 16. Overview of 6 years' therapy for Type II diabetes: a progressive disease. Diabetes 44, 1249–1258 (1995).

  142. Del Prato, S. Megatrials in type 2 diabetes. From excitement to frustration? Diabetologia 52, 1219–1226 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 Diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35, 1364–1379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pozzilli, P. et al. The A1C and ABCD of glycaemia management in type 2 diabetes: a physician's personalized approach. Diabetes Metab. Res. Rev. 26, 239–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. van Olmen, J. et al. The growing caseload of chronic life-long conditions calls for a move towards full self-management in low-income countries. Global Health 7, 38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gu, D. et al. Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia 46, 1190–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Qiao, Q. et al. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 26, 1770–1780 (2003).

    Article  PubMed  Google Scholar 

  148. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 30 (Suppl. 1), S4–S41 (2007).

  149. Laakso, M. & Pyörälä, K. Age of onset and type of diabetes. Diabetes Care 8, 114–117 (1985).

    Article  CAS  PubMed  Google Scholar 

  150. Polonsky, K. S., Sturis, J. & Bell, G. I. Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus—a genetically programmed failure of the beta cell to compensate for insulin resistance. N. Engl. J. Med. 334, 777–783 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Fujimoto, W. et al. Susceptibility to development of central adiposity among populations. Obes. Res. 3 (Suppl. 2), 179S–186S (1995).

    Article  PubMed  Google Scholar 

  152. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363, 157–163 (2004).

  153. Fujiyoshi, P. T., Michalek, J. E. & Matsumura, F. Molecular epidemiologic evidence for diabetogenic effects of dioxin exposure in U. S. Air force veterans of the Vietnam war. Environ. Health Perspect. 114, 1677–1683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee, D. H., Steffes, M. W. & Jacobs, D. R. Jr. Can persistent organic pollutants explain the association between serum gamma-glutamyltransferase and type 2 diabetes? Diabetologia 51, 402–407 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Chen, C. et al. Arsenic and diabetes and hypertension in human populations: a review. Toxicol. Appl. Pharmacol. 222, 298–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Bonadonna, R. & De Fronzo, R. Glucose metabolism in obesity and type 2 diabetes. Diabetes Metab. 17, 112–135 (1991).

    CAS  Google Scholar 

  157. Cho, Y., Lee, J. Y., Park, K. S. & Nho, C. W. Genetics of Type 2 diabetes in East Asian Populations. Curr. Diab. Rep. 12, 686–696 (2012).

    Article  PubMed  Google Scholar 

  158. Ma, R. et al. Genome-wide association study in Chinese identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4. Diabetologia (in press).

  159. Ng, M. C. et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57, 2226–2233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ng, M. C. et al. Ethnic differences in the linkage disequilibrium and distribution of single nucleotide polymorphisms in 35 candidate genes for cardiovascular diseases. Genomics 83, 559–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Tong, P. C. et al. Use of anti-diabetic drugs and glycaemic control in type 2 diabetes—The Hong Kong Diabetes Registry. Diabetes Res. Clin. Pract. 82, 346–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Kim, Y. G. et al. Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologica 56, 696–708 (2013).

    Article  CAS  Google Scholar 

  163. Reed, M. et al. Outpatient electronic health records and the clinical care and outcomes of patients with diabetes mellitus. Ann. Intern. Med. 157, 482–489 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all medical and nursing staff at the Diabetes Mellitus and Endocrine Center, Prince of Wales Hospital, for their commitment and dedication in implementing the diabetes care protocol and its continuous quality improvement.

Author information

Authors and Affiliations

Authors

Contributions

A. P. S. Kong and J. C. N. Chan wrote the manuscript, contributed to review and/or editing of the article before publication, and made substantial contributions to discussion of the article content. G. Xu, N. Brown, W.-Y. So and R. C. W. Ma reviewed and/or edited the article before publication.

Corresponding author

Correspondence to Juliana C. N. Chan.

Ethics declarations

Competing interests

A. P. S. Kong has received honoraria for consultancy or giving lectures from Eli-Lilly, Merck Serono, Nestle and Novo Nordisk, which were donated to the Chinese University of Hong Kong, American Diabetes Association and other charitable organizations. Gang Xu has received research grants and/or honoraria for consultancy or giving lectures from Merck Sharp & Dohme. R. C. W. Ma has received research grants and/or honoraria for consultancy or giving lectures from AstraZeneca, Boehringer Ingelheim, Danone, Eli Lilly, Nestle, Pfizer and Sanofi-Aventis. All proceeds have been donated to the Chinese University of Hong Kong, American Diabetes Association and other charitable organizations that support diabetes research and education. J. C. N. Chan has received research grants and/or honoraria for consultancy or giving lectures from Astra Zeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi-Sankyo, Eli Lilly, GlaxoSmithKline, Merck Serono, Merck Sharp & Dohme, Novo Nordisk, Pfizer and Sanofi-Aventis. The other authors declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, A., Xu, G., Brown, N. et al. Diabetes and its comorbidities—where East meets West. Nat Rev Endocrinol 9, 537–547 (2013). https://doi.org/10.1038/nrendo.2013.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing