Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocrine and musculoskeletal abnormalities in patients with Down syndrome

Abstract

Down syndrome has a prevalence of one in 500 to one in 1,000 live births and is the most common cause of mental retardation. Most patients are treated in childhood and adolescence for mental or growth retardation. Studies that evaluate bone mass in Down syndrome are limited, and many are small case series in pediatric and adult populations who live either in the community or in residential institutions. Several environmental and hormonal factors contribute to low bone mineral density in such patients. Muscle hypotonia, low amounts of physical activity, poor calcium and vitamin D intakes, hypogonadism, growth retardation and thyroid dysfunction contribute to substantial impairments in skeletal maturation and bone-mass accrual that predispose these patients to fragility fractures. Here, we review indications and limitations of bone-mass measurements in children, summarize the endocrine and skeletal abnormalities in patients presenting with Down syndrome, and review studies that investigate therapeutic strategies for such patients.

Key Points

  • Down syndrome is associated with multiple endocrine disorders that affect bone integrity

  • Growth retardation, hypogonadism, poor calcium and vitamin D intakes, and muscle hypotonia are recognized risk factors for low bone density in general, and in Down syndrome in particular

  • Dual X-ray absorptiometry (DXA) of the anteroposterior spine and total body (less head) is the recommended modality for measuring BMD in children

  • Adjustment of DXA-derived BMD values for height age, bone age, or lean body mass is useful in situations of growth retardation and maturation delay

  • Compared with age-matched, healthy children, those with Down syndrome have lower BMD measurements at the spine, with mean decrements of 1 SD

  • Early, planned physical activity, adequate nutrition, and calcium and vitamin D replacement therapy are recommended to maintain bone health in children with Down syndrome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of bone size on dual-energy X-ray absorptiometry-derived BMD.

Similar content being viewed by others

References

  1. Frid, C., Drott, P., Lundell, B., Rasmussen, F. & Annerén, G. Mortality in Down's syndrome in relation to congenital malformations. J. Intellect. Disabil. Res. 43, 234–241 (1999).

    Article  Google Scholar 

  2. Freeman, S. B. et al. Population-based study of congenital heart defects in Down syndrome. Am. J. Med. Genet. 80, 213–217 (1998).

    Article  CAS  Google Scholar 

  3. Prasher, V. P. & Krishnan, V. H. R. Age of onset and duration of dementia in people with Down syndrome: integration of 98 reported cases in the literature. Int. J. Geriatr. Psychiatry 8, 915–922 (1993).

    Article  Google Scholar 

  4. Cohen, W. I. Current dilemmas in Down syndrome clinical care: celiac disease, thyroid disorders and atlanto–axial instability. Am. J. Med. Genet. C. Semin. Med. Genet. 142, 141–148 (2006).

    Article  Google Scholar 

  5. Sepúlveda, S. et al. Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am. J. Ment. Retard. 100, 109–114 (1995).

    PubMed  Google Scholar 

  6. Angelopoulou, N., Souftas, V., Sakadamis, A. & Mandroukas, K. Bone mineral density in adults with Down's syndrome. Eur. Radiol. 9, 648–651 (1999).

    Article  CAS  Google Scholar 

  7. Center, J., Beange, H. & McElduff, A. People with mental retardation have an increased prevalence of osteoporosis: a population study. Am. J. Ment. Retard. 103, 19–28 (1998).

    Article  CAS  Google Scholar 

  8. Waller, D. K., Anderson, J. L., Lorey, F. & Cunningham, G. C. Risk factors for congenital hypothyroidism: an investigation of infant's birth weight, ethnicity, and gender in California, 1990–1998. Teratology 62, 36–41 (2000).

    Article  CAS  Google Scholar 

  9. Prasher, V. P. Prevalence of thyroid dysfunction and autoimmunity in adults with Down syndrome. Downs Syndr. Res. Pract. 2, 67–70 (1994).

    Article  Google Scholar 

  10. Kinnell, H. G., Gibbs, N., Teale, J. D. & Smith, J. Thyroid dysfunction in institutionalized Down's syndrome adults. Psychol. Med. 17, 387–392 (1987).

    Article  CAS  Google Scholar 

  11. Fort, P. et al. Abnormalities of thyroid function in infants with Down syndrome. J. Pediatr. 104, 545–549 (1984).

    Article  CAS  Google Scholar 

  12. Haddow, J. E. et al. Maternal thyroid during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341, 549–555 (1999).

    Article  CAS  Google Scholar 

  13. Karlsson, B., Gustafsson, J., Hedov, G., Ivarsson, S. A. & Annerén, G. Thyroid dysfunction in Down syndrome: relation to age and thyroid autoimmunity. Arch. Dis. Child. 79, 242–245 (1998).

    Article  CAS  Google Scholar 

  14. Sharav, T., Collins, R. M. Jr & Baab, P. J. Growth studies in infants and children with Down syndrome and elevated levels of thyrotropin. Am. J. Dis. Child. 142, 1302–1306 (1988).

    CAS  PubMed  Google Scholar 

  15. Tüysüz, B. & Beker, D. B. Thyroid dysfunction in children with Down syndrome. Acta Paediatr. 90, 1389–1393 (2001).

    Article  Google Scholar 

  16. Sharav, T., Landau, H., Zadik, Z. & Einarson, T. R. Age-related patterns of thyroid-stimulating hormone response to thyrotropin-releasing hormone stimulation in Down syndrome. Am. J. Dis. Child. 145, 172–175 (1991).

    CAS  PubMed  Google Scholar 

  17. Lavard, L., Ranløv, I., Perrild, H., Andersen, O. & Jacobsen, B. B. Incidence of juvenile thyrotoxicosis in Denmark, 1982–1988. A nationwide study. Eur. J. Endocrinol. 130, 565–568 (1994).

    Article  CAS  Google Scholar 

  18. Hsiang, Y. H., Berkovitz, G. D., Bland, G. L., Migeon, C. J. & Warren, A. C. Gonadal function in patients with Down syndrome. Am. J. Med. Genet. 27, 449–458 (1987).

    Article  CAS  Google Scholar 

  19. Sakadamis, A., Angelopoulou, N., Matziari, C., Papameletiou, V. & Souftas, V. Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur. J. Obstet. Gynecol. Reprod. Biol. 100, 208–212 (2002).

    Article  CAS  Google Scholar 

  20. Benda, C. E. in The Child with Mongolism, 124–129 (Grune and Stratton, New York, 1960).

    Google Scholar 

  21. Pradhan, M., Dalal, A., Khan, F. & Agrawal, S. Fertility in men with Down syndrome: a case report. Fertil. Steril. 86, 1765.e1–1765.e3 (2006).

    Article  Google Scholar 

  22. Bobrow, M., Barby, T., Hajianpour, A., Maxwell, D. & Yau, S. C. Fertility in a male with trisomy 21. J. Med. Genet. 29, 141 (1992).

    Article  CAS  Google Scholar 

  23. Zühlke, C., Thies, U., Braulke, I., Reis, A. & Schirren, C. Down syndrome and male fertility: PCR-derived fingerprinting, serological and andrological investigations. Clin. Genet. 46, 324–326 (1994).

    Article  Google Scholar 

  24. Sara, V. R., Gustavson, K. H., Annerén, G., Hall, K. & Wetterberg, L. Somatomedins in Down's syndrome. Biol. Psychiatry 18, 803–811 (1983).

    CAS  PubMed  Google Scholar 

  25. Cronk, C. et al. Growth charts of children with Down syndrome: 1 month to 18 years of age. Pediatrics 81, 102–110 (1988).

    CAS  PubMed  Google Scholar 

  26. Castells, S. et al. Hypothalamic versus pituitary dysfunction in Down's syndrome as a cause of growth retardation. J. Intellect. Disabil. Res. 40, 509–517 (1996).

    Article  Google Scholar 

  27. Wisniewski, K. E. & Bobinski, M. Hypothalamic abnormalities in Down syndrome. In Progress in clinical and biological research, Vol. 373, The Morphogenesis of Down Syndrome (ed. Epstein, C. J.) 153–167 (Wiley-Liss, New York, 1991).

    Google Scholar 

  28. Shöenau, E. The functional muscle-bone unit in health and disease. In Paediatric Osteology: Prevention of Osteoporosis—A Paediatric Task? (eds Shöenau, E. & Matkovic, V.) 191–202 (Elsevier Science, Singapore, 1998).

    Google Scholar 

  29. Morris, A. F., Vaughan, S. E. & Vaccaro, P. Measurements of neuromuscular tone and strength in Down syndrome children. J. Ment. Defic. Res. 26 (Pt 1), 41–46 (1982).

    CAS  PubMed  Google Scholar 

  30. Bishop, N. et al. Dual-energy X-ray absorptiometry assessment in children and adolescents with diseases that may affect the skeleton: the 2007 ISCD pediatric official positions. J. Clin. Densitom. 11, 29–42 (2008).

    Article  Google Scholar 

  31. El-Hajj Fuleihan, G. & Vieth, R. Vitamin D insufficiency and musculoskeletal health in children and adolescents. Int. Congr. Ser. 1297, 91–108 (2006).

    Article  Google Scholar 

  32. Cabana, M., Capone, G., Fritz, A. & Berkovitz, G. Nutritional rickets in a child with Down syndrome. Clin. Pediatr. (Phila.) 36, 235–237 (1997).

    Article  CAS  Google Scholar 

  33. George, E. K. et al. High frequency of celiac disease in Down syndrome. J. Pediatr. 128, 555–557 (1996).

    Article  CAS  Google Scholar 

  34. Zachor, D. A., Mroczek-Musulman, E. & Brown, P. Prevalence of celiac disease in Down syndrome in the United States. J. Pediatr. Gastroenterol. Nutr. 31, 275–279 (2000).

    Article  CAS  Google Scholar 

  35. Javaid, M. K. & Cooper, C. Prenatal and childhood influences on osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 16, 349–367 (2002).

    Article  CAS  Google Scholar 

  36. Bachrach, L. K. Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol. Metab. Clin. North Am. 34, 521–535 (2005).

    Article  Google Scholar 

  37. Fewtrell, M. S. & British Paediatric & Adolescent Bone Group. Bone densitometry in children assessed by dual X-ray absorptiometry: uses and pitfalls. Arch. Dis. Child. 88, 795–798 (2003).

    Article  CAS  Google Scholar 

  38. Bolotin, H. H. DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodeling. Bone 41, 138–154 (2007).

    Article  CAS  Google Scholar 

  39. Gordon, C. et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J. Clin. Densitom. 11, 43–58 (2008).

    Article  Google Scholar 

  40. Molgaard, C., Thomsen, B. L., Prentice, A., Cole, T. J. & Michaelsen, K. F. Whole body bone mineral content in healthy children and adolescents. Arch. Dis. Child. 76, 9–15 (1997).

    Article  CAS  Google Scholar 

  41. Högler, W., Briody, J., Woodhead, H. J., Chan, A. & Cowell, C. T. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J. Pediatr. 143, 81–88 (2003).

    Article  Google Scholar 

  42. Goulding, A. et al. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J. Bone Miner. Res. 15, 2011–2018 (2000).

    Article  CAS  Google Scholar 

  43. Clark, E. M., Ness, A. R., Bishop, N. J. & Tobias, J. H. Association between bone mass and fractures in children: a prospective cohort study. J. Bone Miner. Res. 21, 1489–1495 (2006).

    Article  Google Scholar 

  44. Flynn, J., Foley, S. & Jones, G. Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty? An eight-year prospective study. J. Bone Miner. Res. 22, 1463–1467 (2007).

    Article  Google Scholar 

  45. Tyler, C. V., Snyder, C. W. & Zyzanski, S. Screening for osteoporosis in community-dwelling adults with mental retardation. Ment. Retard. 38, 316–321 (2000).

    Article  Google Scholar 

  46. Baptista, F., Varela, A. & Sardinha, L. Bone mineral density in males and females with and without Down syndrome. Osteoporos. Int. 16, 380–388 (2005).

    Article  Google Scholar 

  47. Jaffe, J. S., Timell, A. & Gulanski, B. Prevalence of low bone density in women with developmental disabilities. J. Clin. Densitom. 4, 25–29 (2001).

    Article  CAS  Google Scholar 

  48. Angelopoulou, N. et al. Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif. Tissue Int. 66, 176–180 (2000).

    Article  CAS  Google Scholar 

  49. Guijarro, M. et al. Bone mass in young adults with Down syndrome. J. Intellect. Disabil. Res. 52, 182–189 (2008).

    Article  CAS  Google Scholar 

  50. Pitetti, K. H., Climstein, M., Mays, M. J. & Barrett, P. J. Isokinetic arm and leg strength in Down syndrome: a comparative study. Arch. Phys. Med. Rehabil. 73, 847–850 (1992).

    CAS  PubMed  Google Scholar 

  51. Roth, G. M., Sun, B., Greensite, F. S., Lott, I. T. & Dietrich, R. B. Premature aging in persons with Down syndrome. Am. J. Neuroradiol. 17, 1283–1289 (1996).

    CAS  PubMed  Google Scholar 

  52. Kao, C. H., Chen, C. C., Wang, S. J. & Yeh, S. H. Bone mineral density in children with Down's syndrome detected by dual photon absorptiometry. Nucl. Med. Commun. 13, 773–775 (1992).

    Article  CAS  Google Scholar 

  53. Lohiya, G. S., Crinella, F. M., Tan-Figueroa, L., Caires, S. & Lohiya, S. Fracture epidemiology and control in a developmental center. West J. Med. 170, 203–209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schrager, S., Kloss, C. & Ju, A. W. Prevalence of fractures in women with intellectual disabilities: a chart review. J. Intellect. Disabil. Res. 51, 253–259 (2007).

    Article  CAS  Google Scholar 

  55. Warren, M. P. & Chua, A. Appropriate use of estrogen replacement therapy in adolescents and young adults with Turner syndrome and hypopituitarism in light of the Women's Health Initiative. Growth Horm. IGF Res. 16 (Suppl.), S98–S102 (2006).

    Article  CAS  Google Scholar 

  56. Ross, J. L. et al. Effect of low doses of estradiol on 6-month growth rates and predicted height in patients with Turner syndrome. J. Pediatr. 109, 950–953 (1986).

    Article  CAS  Google Scholar 

  57. Saenger, P. et al. Recommendations for the diagnosis and management of Turner syndrome. J. Clin. Endocrinol. Metab. 86, 3061–3069 (2001).

    CAS  PubMed  Google Scholar 

  58. Annerén, G. et al. Growth hormone treatment in young children with Down's syndrome: effects on growth and psychomotor development. Arch. Dis. Child. 80, 334–338 (1999).

    Article  Google Scholar 

  59. Torrado, C., Bastian, W., Wisniewski, K. E. & Castells, S. Treatment of children with Down syndrome and growth retardation with recombinant human growth hormone. J. Pediatr. 119, 478–483 (1991).

    Article  CAS  Google Scholar 

  60. Dawson-Hughes, B. et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 337, 670–676 (1997).

    Article  CAS  Google Scholar 

  61. Chapuy, M. C. et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Ostoporos. Int. 13, 257–264 (2002).

    Article  CAS  Google Scholar 

  62. Viljakainen, H. T. et al. A positive dose-response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention. J. Bone Miner. Res. 21, 836–844 (2006).

    Article  CAS  Google Scholar 

  63. El Hajj-Fuleihan, G. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J. Clin. Endocrinol. Metab. 91, 405–412 (2006).

    Article  Google Scholar 

  64. Del Arco, C., Riancho, J. A., Luzuriaga, C., González-Macías J. & Flórez J. Vitamin D status in children with Down's syndrome. J. Intellect. Disabil. Res. 36, 251–257 (1992).

    Article  Google Scholar 

  65. Molteno, C., Smit, I., Mills, J. & Huskisson, J. Nutritional status of patients in a long-stay hospital for people with mental handicap. S. Afr. Med. J. 90, 1135–1140 (2000).

    CAS  PubMed  Google Scholar 

  66. Zubillaga, P. et al. Effect of vitamin D and calcium supplementation on bone turnover in institutionalized patients with Down syndrome. Eur. J. Clin. Nutr. 60, 605–609 (2006).

    Article  CAS  Google Scholar 

  67. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. (1991) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. The National Academies Press (online), (accessed 23 April 2009).

  68. Misra, M. et al. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122, 398–417 (2008).

    Article  Google Scholar 

  69. Ulrich, B. D., Angulo-Kinzler, R. M. & Yun, J. Treadmill training of infants with Down syndrome: evidence-based developmental outcomes. Pediatrics 108, E84 (2001).

    Article  CAS  Google Scholar 

  70. Shields, N., Taylor, N. F. & Dodd, K. J. Effects of a community-based progressive resistance training program on muscle performance and physical function in adults with Down syndrome: a randomized controlled trial. Arch. Phys. Med. Rehabil. 89, 1215–1220 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Ghalayini and R. El-Rassi for their assistance in conducting PubMed searches, retrieval of articles, and manuscript preparation and finalization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada El-Hajj Fuleihan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawli, Y., Nasrallah, M. & Fuleihan, GH. Endocrine and musculoskeletal abnormalities in patients with Down syndrome. Nat Rev Endocrinol 5, 327–334 (2009). https://doi.org/10.1038/nrendo.2009.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing