Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The future challenges facing the development of new antimicrobial drugs

Key Points

  • The global emergence of resistance to antibacterial agents is increasingly limiting the effectiveness of current drugs.

  • There is no obvious solution to this problem, although the development of new antimicrobial agents, the extension of the life of current agents by improved educational methods, vaccination and other methods of disease control are being pursued.

  • However, the past record of rapid, widespread emergence of resistance to newly introduced antimicrobial agents indicates that even new families of antimicrobial agents will have a short life expectancy.

  • This Review covers four approaches to the development of new systemic antimicrobial agents: classic screening; structural changes to existing agents; genome hunting; and a novel route that targets non-multiplying, latent bacteria. The primary focus is the last approach, which is hoped to lead to new drugs that will reduce the rate of emergence of resistance to antimicrobial agents.

  • Resistance to antimicrobial agents could be due to an innate property of the bacterium, or a consequence of mutation or gene transfer.

  • So far, all current antimicrobial agents have been developed against multiplying bacteria However, multiplication is not the main state in which microbes exist — they spend most of their time not multiplying. This non-multiplying state is resistant to all known antimicrobial drugs.

  • Non-multiplying bacteria prolong treatment. For example, in bacterial pneumonia, the microbes consist of at least two populations that exist simultaneously; namely, multiplying and non-multiplying. Multiplying bacteria are killed quickly by antimicrobial agents, whereas non-multiplying or slowly multiplying bacteria tolerate repeated doses of antimicrobial agents and lead to the need for a conventional prolonged course of drugs.

  • Prolonged suboptimal bactericidal concentrations can lead to the emergence of resistance, not usually in the target pathogen, but in the normal flora in the gut, skin and throat. Long courses of antimicrobial agents are more likely to encourage the emergence of resistance than shorter courses.

  • Prolonged courses of antimicrobial agents are also associated with a reduction in patient compliance, which leads to an increased rate of resistance.

  • One possible solution to the current problems might be to shorten the duration of chemotherapy by targeting non-multiplying bacteria with new antimicrobial agents. Drug libraries should be screened against non-multiplying bacteria to discover new antibacterial drugs that kill them.

  • If new drugs that target non-multiplying bacteria are used in combination with those that target multiplying bacteria, the emergence of antimicrobial resistance to the new drugs could potentially be slowed, and the drugs could remain useful for longer than at present.

  • The authors propose a new set of standards for testing of antimicrobial agents against non-multiplying bacteria. These are more suitable than minimum inhibitory concentration (MIC).

Abstract

The emergence of resistance to antibacterial agents is a pressing concern for human health. New drugs to combat this problem are therefore in great demand, but as past experience indicates, the time for resistance to new drugs to develop is often short. Conventionally, antibacterial drugs have been developed on the basis of their ability to inhibit bacterial multiplication, and this remains at the core of most approaches to discover new antibacterial drugs. Here, we focus primarily on an alternative novel strategy for antibacterial drug development that could potentially alleviate the current situation of drug resistance — targeting non-multiplying latent bacteria, which prolong the duration of antimicrobial chemotherapy and so might increase the rate of development of resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Antibacterial drug targets.
Figure 3: Mechanisms of genetic resistance to antimicrobial agents.
Figure 4: Prolonged chemotherapy can lead to an enhanced rate of emergence of resistance to antibacterial agents.
Figure 5: Non-multiplying bacteria.
Figure 6: Development of new antimicrobials through genome hunting.
Figure 7: Killing non-multiplying bacteria with one-dose therapy.
Figure 8: New sensitivity tests for clinically latent bacteria: MSC and MDC.

Similar content being viewed by others

References

  1. Austrian, R. & Gold, J. Pneumococcal bacteraemia with a special reference to bacteremic Pneumococcal pneumonia. Ann. Intern. Med. 60, 759–776 (1964).

    CAS  PubMed  Google Scholar 

  2. Dineen, P., Homan, W. P. & Grafe, W. R. Tuberculous peritonitis: 43 years experience in diagnosis and treatment. Ann. Surg. 184, 717–722 (1976).

    Google Scholar 

  3. Bax, R. P. et al. Antibiotic resistance — what can we do? Nature Med. 4, 545–546 (1998).

    CAS  PubMed  Google Scholar 

  4. Bax, R. P. & Mullan, N. Response of the pharmaceutical industry to antimicrobial resistance. Balliere Clin. Infect. Dis. 5, 289–304 (1999).

    Google Scholar 

  5. Thornsberry, C. et al. Regional trends in antimicrobial resistance among clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in the United States: results from the TRUST Surveillance Program, 1999–2000. Clin. Infect. Dis. 34, S4–S16 (2002).

    PubMed  Google Scholar 

  6. National Center for Infectious Diseases. Campaign to prevent antimicrobial resistance in healthcare settings. Centers for Disease Control and Prevention [online] (cited 30 Sep 2002) <http://www.cdc.gov/drugresistance/healthcare/problem.htm> (2002).

  7. Demyan, W. F. et al. in Program and Abstracts of the 37th International Conference on Antimicrobial Agents and Chemotherapy (ICAAC) Toronto Abstract 724 (American Society for Microbiology, Toronto, 1997). References 7 and 31 describe linezolid, which is the first member of the first absolutely new family of antimicrobial agents to be launched into the marketplace for 35 years. It is hoped, because bacteria have not experienced this type of drug previously, that resistance will be slow to emerge.

  8. Bryskier, A. Novelties in the field of anti-infective compounds in 1999. Clin. Infect. Dis. 31, 1423–1466 (2000).

    CAS  PubMed  Google Scholar 

  9. Saussier-Morange, V. & Leclercq, R. (eds) in Program and Abstracts of the 40th International Conference on Antimicrobial Agents and Chemotherapy (ICAAC) Toronto Abstract 149 (American Society for Microbiology, Toronto, 2000).

  10. Sievert, D. M. et al. Staphyloccocus aureus resistant to vancomycin — United States 2002. Morbid. Mortal. Wkly Rep. 51, 565–567 (2002).

    Google Scholar 

  11. Bax, R., Mullan, N. & Verhoef, J. The millennium bugs — the need for and development of new antibacterials. Int. J. Antimicrob. Agents 16, 51–59 (2000).

    CAS  PubMed  Google Scholar 

  12. Chopra, I., Hodgson, J., Metcalf, B. & Poste, G. New approaches to the control of infections caused by antibiotic-resistant bacteria. An industry perspective. JAMA 275, 401–403 (1996).

    CAS  PubMed  Google Scholar 

  13. House of Lords Select Committee on Science and Technology. Resistance to Antibiotics 7th Report (Stationary Office Session, London, 1997–1998). References 13 and 23 are UK and US government documents that identify resistance to antimicobial agents as a major public health problem.

  14. The Academy of Medical Sciences. Academic Medical Bacteriology in the 21st Century (The Academy of Medical Sciences, London, 2001).

  15. Carbon, C. & Bax, R. P. Regulating the use of antibiotics in the community. BMJ 317, 663–665 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. World Health Organization. Report and Proceedings of a WHO Meeting in Berlin, Germany, 13–17 October 1997 WHO EM CL 97.4 (2001).

  17. US General Accounting Office. The Agricultural Use of Antibiotics and Its Implications for Human Health. US General Accounting Office, Report to the Honorable Tom Harkin, Ranking Minority Member, Committee on Agriculture, Nutrition, and Forestry US Senate Document Number RCED-99–74 (April 1999).

  18. Scheckler, W. E. et al. Requirements for infrastructure and panel report. Infect. Control Hosp. Epidemiol. 19, 114–124 (1998).

    CAS  PubMed  Google Scholar 

  19. Pallares, D. et al. Trends in antimicrobials utilization in a tertiary teaching hospital during a 15 year period (1978–1992). Infect. Control Hosp. Epidemiol. 14, 376–382 (1993).

    CAS  PubMed  Google Scholar 

  20. Goldman, D. A. et al. Strategies to prevent and control the emergence and spread of antimicrobial resistant organisms in hospitals. A challenge to hospital leadership? JAMA 255, 234–240 (1996).

    Google Scholar 

  21. Peltola, H., Kilpi, T. & Anttila, M. Rapid disappearance of Haemophilus influenzae type b meningitis after routine childhood immunization with conjugate vaccines. Lancet 340, 592–594 (1992).

    CAS  PubMed  Google Scholar 

  22. Centres for Disease Control and Prevention. Progress towards eliminating Haemophilus influenzae type b disease among infants and children. United States 1987–1997. Morbid. Mortal. Wkly Rep. 47, 993–998 (1998).

  23. Subcommittee on Public Health. Antimicrobial Resistance: solutions for this growing public health threat. Senate Committee on Health, Education, Labor, and Pensions [online] (cited 30 Sep 2002) < http://www.senate.gov/%7Elabor/hearings/febhear/febhear.htm> (1999).

  24. National Center for Infectious Diseases. Campaign to prevent antimicrobial resistance in healthcare settings. Centers for Disease Control and Prevention [online] (cited 30 Sep 2002) <http://www.cdc.gov/drugresistance/healthcare/problem.htm> (2002).

  25. National Center for Infectious Diseases. Background on antibiotic resistance. Centers for Disease Control and Prevention [online] (cited 30 Sep 2002) <http://www.cdc.gov/drugresistance/community> (2002).

  26. Bax, R., Gabbay, F. & Phillips, I. The Whitely Park study group, antibiotic clinical trials. Clin. Microbiol. Infect. 5, 774–787 (1999).

    Google Scholar 

  27. Baquero, F., Bax, R. & Phillips, I. Antibiotic clinical trials revisited. J. Antimicrob. Chemother. 45, 651–652 (2000).

    Google Scholar 

  28. Schlaes, D., Levy, S. & Archer, G. Antimicrobial resistance — new directions. ASM News 57, 455–458 (1991).

    Google Scholar 

  29. Daly, J. S., Eliopoulos, G. M., Willey, S. & Moellering, R. C. Jr., Mechanism of action and in vitro and in vivo activities of S-6123, a new oxazolidinone compound. Antimicrob. Agents Chemother. 32, 1341–1346 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsiodras, S. et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358, 207–208 (2001).

    CAS  PubMed  Google Scholar 

  31. Gonzales, R. D. et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357, 1179 (2001). References 30 and 31 describe the emergence of resistance to linezolid only one year after launch. This emphasizes that resistance can arise quickly to antibacterial agents, even if they are the first of an absolutely new family of antimicrobial drugs.

  32. Mandell, G. L., Bennett, J. & Dolin, R. (eds) in Principles and Practice of Infectious Diseases 5th edn 261–448 (Churchill Livingstone, Philadelphia, (2000). These chapters cover the mechanisms of action of all the main classes of antibacterial agents.

    Google Scholar 

  33. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    CAS  PubMed  Google Scholar 

  34. Spratt, B. G. Biochemical and genetic approaches to the mechanism of action of penicillin. Phil. Trans. R. Soc. Lond. B 289, 273–283 (1980).

    CAS  Google Scholar 

  35. Smith, J. T. The mode of action of 4-quinolones and possible mechanisms of resistance. J. Antimicrob. Chemother. 18, 21–29 (1984).

    Google Scholar 

  36. Wehrli, W. et al. Interaction of rifamycin with bacterial RNA polymerase. Proc. Natl Acad. Sci. USA 61, 667–673 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Goldman, R. C., Fesik, S. W. & Doran, C. Role of protonated and neutral forms of macrolides in binding to ribosomes from Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 34, 426–431 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hitchings, G. T. in Trimethoprim/Sulphamethozale in Bacterial Infections (eds Bernstein, L. & Salter, A.) 7–16 (Churchill Livingstone, Edinburgh and London, 1973).

    Google Scholar 

  39. Woods, D. D. Relation of p-aminobenzoic acid to mechanism of action of sulphanilamide. Br. J. Exp. Pathol. 21, 74–90 (1940).

    CAS  PubMed Central  Google Scholar 

  40. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226–236 (1929). This article describes the discovery of penicillin by Alexander Fleming. Together with the subsequent purification of penicillin by Florey and Chain, this was one of the most important milestones in the history of medicine.

    CAS  Google Scholar 

  41. Gardner, P. et al. Recovery of resistance factors from a drug-free community. Lancet 2, 774–776 (1969).

    CAS  PubMed  Google Scholar 

  42. Opal, S. M., Mayer, K. & Medeiros, A. in Mechanisms of Bacterial Antibiotic Resistance. Principles and Practice of Infectious Diseases 5th edn Ch. 16 (eds. Mandell, G. L., Bennett, J. & Dolin, R.) 236–253 (Churchill Livingstone, Philadelphia, 2000). This chapter details the molecular genetics of resistance as well as the mechanisms of resistance that cover all known antibiotic classes. Rapid development of resistance has limited the duration of the effectiveness of specific agents against specific pathogens.

    Google Scholar 

  43. Sefton, A. M. Mechanisms of antimicrobial resistance: their clinical relevance in the new millennium. Drugs 62, 557–566 (2002).

    CAS  PubMed  Google Scholar 

  44. Medeiros, A. A. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis. 24, S19–S45 (1997).

    CAS  PubMed  Google Scholar 

  45. Amsden, G., Ballow, C. & Bertino, J. Pharmacokinetics and Pharmacodynamics of Anti-Infective Agents. Principles and Practice of Infectious Diseases Ch. 17 (eds Mandell G. L., Bennett, J. & Dolin, R.) 253–260 (Church Livingstone, Philadelphia, 2000).

    Google Scholar 

  46. Spratt, B. G. Resistance to antibiotics mediated by target alterations. Science 264, 388–393 (1994).

    CAS  PubMed  Google Scholar 

  47. Cunha, B. A. Strategies to control antibiotic resistance. Semin. Respir. Infect. 17, 250–258 (2002).

    PubMed  Google Scholar 

  48. Farra, A. et al. Antibiotic use and Escherichia coli resistance trends for quinolones and cotrimoxazole in Sweden. Scand. J. Infect. Dis. 34, 449–455 (2002).

    PubMed  Google Scholar 

  49. Gold, H. S., Moellering, R. C. Jr. Antimicrobial drug resistance. N. Engl. J. Med. 335, 1445–1453 (1996).

    CAS  PubMed  Google Scholar 

  50. Sykes, R. B. & Matthew, M. The β-lactamases of Gram-negative bacteria and their resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2, 115–157 (1976).

    CAS  PubMed  Google Scholar 

  51. Jacoby, G. A. & Medeiros, A. A. More extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 35, 1697–1704 (1994).

    Google Scholar 

  52. Amyes, S. G. & Smith, J. T. R-factor mediated dihydrofolate reductases which confer trimethoprim resistance. J. Gen. Microbiol. 107, 263–271 (1978).

    CAS  PubMed  Google Scholar 

  53. Livermore, D. M. Interplay of impermeability and chromosomal β-lactamase activity in impenem resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 36, 2046–2048 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams, J. B. Drug efflux as a mechanism of resistance. Br. J. Biomed. Sci. 53, 290–293 (1996).

    CAS  PubMed  Google Scholar 

  55. Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Groicher, K. H., Firek, B. A., Fujimoto, D. F. & Bayles, K. W. Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J. Bacteriol. 182, 1794–1801 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Asselt, G. J. & Mouton, R. P. Detection of penicillin tolerance in Streptococcus pyogenes. J. Med. Microbiol. 38, 197–202 (1993).

    CAS  PubMed  Google Scholar 

  58. Davey, P., Barza, M. & Stuart, M. Tolerance of Pseudomonas aeruginosa to killing by ciprofloxacin, gentamicin and imipenem in vitro and in vivo. J. Antimicrob. Chemother. 4, 395–404 (1988).

    Google Scholar 

  59. Hu, Y. & Coates, A. R. Increased levels of sigJ mRNA in late stationary phase cultures of Mycobacterium tuberculosis detected by DNA array hybridisation. FEMS Microbiol. Lett. 202, 59–65 (2001).

    CAS  PubMed  Google Scholar 

  60. Hu, Y. et al. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J. Bacteriol. 182, 6358–6365 (2000). The first description of metabolic activity (radioactive- uridine incorporation) in rifampicin-treated clinically latent Mycobacterium tuberculosis. The significance of this finding is that the presence of metabolic activity in these profoundly tolerant latent bacteria indicates that they might be susceptible to future drugs that specifically target clinically latent bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bangham, C. et al. in Evolution in Health and Disease (ed. Stearns, S. C.) 152–160 (Oxford Univ. Press, 1999).

    Google Scholar 

  62. Watve, M. G., Tickoo, R., Jog, M. M. & Bhole, B. D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176, 386–390 (2001).

    CAS  PubMed  Google Scholar 

  63. Silver, L. & Bostian, K. Screening of natural products for antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 9, 455–461 (1990).

    CAS  PubMed  Google Scholar 

  64. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    CAS  PubMed  Google Scholar 

  65. MacNeil, I. A. et al. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3, 301–308 (2001). Most soil bacteria are non-cultivable, and this reference describes a method for screening all soil bacteria for new antibiotics. This is potentially a new source of antibiotics.

    CAS  PubMed  Google Scholar 

  66. Knowles, D. J. New strategies for antibacterial drug design. Trends Microbiol. 5, 379–383 (1997).

    CAS  PubMed  Google Scholar 

  67. Gootz, T. D. Discovery and development of new antimicrobial agents. Clin. Microbiol. Rev. 3, 13–31 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. O'Callaghan, C. H. et al. Cefuroxime, a new cephalosporin antibiotic: activity in vitro. Antimicrob. Agents Chemother. 13, 657–664 (1978).

    Google Scholar 

  69. Neu, H. C. Structure–activity relations of new β-lactam compounds and in vitro activity against common bacteria. Rev. Infect. Dis. 5, S319–S337 (1983).

    Google Scholar 

  70. Allan, J. D., Eliopoulos, G. M. & Moellering, R. C. in Contempory Issues in Infectious Diseases Vol. 6 (eds Root, R. K., Trunkey, D. D. & Sande, M. A.) 263–284 (Churchill Livingstone, New York, 1987).

    Google Scholar 

  71. Hopwood, D. A. et al. Production of 'hybrid' antibiotics by genetic engineering. Nature 314, 642–644 (1985).

    CAS  PubMed  Google Scholar 

  72. Omura, S., Ikeda, H., Malpartida, F., Kieser, H. M. & Hopwood, D. A. Production of new hybrid antibiotics, mederrhodins A and B, by a genetically engineered strain. Antimicrob. Agents Chemother. 29, 13–19 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).

    CAS  PubMed  Google Scholar 

  74. Bentley, R. & Bennett, J. W. Constructing polyketides: from collie to combinatorial biosynthesis. Annu. Rev. Microbiol. 53, 411–446 (1999).

    CAS  PubMed  Google Scholar 

  75. Cane, D. E., Walsh, C. T. & Khosla, C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63–68 (1998).

    CAS  PubMed  Google Scholar 

  76. Hopwood, D. A. Genetic engineering of Streptomyces to create hybrid antibiotics. Curr. Opin. Biotechnol. 4, 531–537 (1993).

    CAS  PubMed  Google Scholar 

  77. Kohli, R. M., Walsh, C. T. & Burkart, M. D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002).

    CAS  PubMed  Google Scholar 

  78. The Wellcome Trust Sanger Institute. Microbial genomes. The Wellcome Trust Sanger Institute [online] (cited 30 Sep 2002) <http://www.sanger.ac.uk/Projects/Microbes/> (2002). This web site describes the results of the Sanger Institute Bacterial Genome Sequencing Project. So far, 38 genomes have been completed or are underway. The data generated from this programme underpin much of the genome hunting that is being undertaken to discover new antimicrobial agents. No drugs have reached early clinical development, but the field still holds much promise.

  79. Tettelin, F. et al. Finding drug targets in microbial genomes. Drug Discov.Today 6, 887–892 (2001).

    PubMed  Google Scholar 

  80. Allsop. A. E. (1998). New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr. Opin. Microbiol. 1, 530–534 (1998).

    CAS  PubMed  Google Scholar 

  81. Rosamund, J. & Allsop, A. Harnessing the power of the genome in the search for new antibiotics. Science 287, 1973–1976 (2000).

    Google Scholar 

  82. Black, T. & Hare, R. Will genomics revolutionize antimicrobial drug discovery? Curr. Opin. Microbiol. 3, 522–527 (2000).

    CAS  PubMed  Google Scholar 

  83. Payne, D. J. et al. The impact of genomics on novel antibacterial targets. Curr. Opin. Drug Discov. Dev. 3, 177–190 (2000).

    CAS  Google Scholar 

  84. Payne, D. J. et al. Delivering novel targets and antibiotics from genomics. Curr. Opin. Invest. Drugs 2, 1028–1034 (2001).

    CAS  Google Scholar 

  85. McDevitt, D. et al. (2002). Novel targets for the future development of antibacterial agents. Symp. Ser. Soc. Appl. Microbiol. 92, 28S–34S

  86. Chopra, I. et al. Exploiting current understanding of antibiotic action for discovery of new drugs. Symp. Ser. Soc. Appl. Microbiol. 92, 4S–15S (2002).

    Google Scholar 

  87. Rosenberg, M. & McDevitt, D. Exploiting genomics to discover new antibiotics. Trends Microbiol. 9, 611–617 (2001).

    PubMed  Google Scholar 

  88. Connelly, G. P. Substrate profiling of new enzymes for drug discovery. Fed. Res. Progress NDN-049-0330-1033-1 (2001).

  89. Lazazzera, B. A. Quorum sensing and starvation: signals for entry into stationary phase. Curr. Opin. Microbiol. 3, 177–182 (2000).

    CAS  PubMed  Google Scholar 

  90. Mardis, E., McPherson, J., Martienssen, R., Wilson, R. K. & McCombie, W. R. What is finished, and why does it matter. Genome Res. 12, 669–671 (2002).

    CAS  PubMed  Google Scholar 

  91. Potera, C. Microbial genomics grows in maturity and status. ASM News 68, 271–276 (2002).

    Google Scholar 

  92. Good, L., Awasthi, S. K., Dryselius, R., Larsson, O. & Nielsen, P. E. Bactericidal antisense effects of peptide–PNA conjugates. Nature Biotechnol. 19, 360–364 (2001).

    CAS  Google Scholar 

  93. Green, D. W. The bacterial cell wall as a source of antibacterial targets. Expert Opin. Ther. Targets 6, 1–19 (2002).

    CAS  PubMed  Google Scholar 

  94. Coates, A. R. M. (ed.) Dormancy and Low Growth States in Microbial Diseases (Cambridge Univ. Press; in the press)

  95. Driks, A. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol. 10, 251–254 (2002).

    CAS  PubMed  Google Scholar 

  96. Takamatsu, H. & Watabe, K. Assembly and genetics of spore protective structures. Cell. Mol. Life Sci. 59, 434–444 (2002).

    CAS  PubMed  Google Scholar 

  97. Mukamolova, G. V., Kaprelyants, A. S., Young, D. I., Young, M. & Kell, D. B. A bacterial cytokine. Proc. Natl Acad. Sci. USA 95, 8916–8921 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mukamolova, G. V., Kormer, S. S., Kell, D. B. & Kaprelyants, A. S. Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. Arch. Microbiol. 172, 9–14 (1999).

    CAS  PubMed  Google Scholar 

  99. Thom, S. M., Horobin, R. W., Seidler, E. & Barer, M. R. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. J. Appl. Bacteriol. 74, 433–443 (1993).

    CAS  PubMed  Google Scholar 

  100. Phillips, Z. E. & Strauch, M. A. Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci. 59, 392–402 (2002).

    CAS  PubMed  Google Scholar 

  101. Rozen, Y. & Belkin, S. Survival of enteric bacteria in seawater. FEMS Microbiol. Rev. 25, 513–529 (2001).

    CAS  PubMed  Google Scholar 

  102. Nystrom, T. Not quite dead enough: on bacterial life, culturability, senescence and death. Arch. Microbiol. 176, 159–164 (2001).

    CAS  PubMed  Google Scholar 

  103. Spector, M. P. The starvation–stress response (SSR) of Salmonella. Adv. Microb. Physiol. 40, 233–279 (1998).

    CAS  PubMed  Google Scholar 

  104. Hengge-Aronis, R. Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol. 21, 887–893 (1996).

    CAS  PubMed  Google Scholar 

  105. Barer, M. R. in Dormancy and Low Growth States in Microbial Diseases (ed. Coates, A. R. M.) (Cambridge Univ. Press; in the press).

  106. Spoering, A. L. & Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mitchison, D. A. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis. 4, 796–806 (2000).

    CAS  PubMed  Google Scholar 

  109. Herbert, D. et al. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 40, 2296–2299 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ashby, M. J., Neale, J. E., Knott, S. J. & Critchley, I. A. Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. J. Antimicrob. Chemother. 33, 443–452 (1994).

    CAS  PubMed  Google Scholar 

  111. McCune, R. M., Feldmann, F. M., Lambert, H. P. & McDermott, W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123, 445–468 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mitchison, D. A. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int. J. Tuberc. Lung Dis. 2, 10–15 (1998).

    CAS  PubMed  Google Scholar 

  113. Szeto, C. C. et al. Clinical course of peritonitis due to Pseudomonas species complicating peritoneal dialysis: a review of 104 cases. Kidney Int. 59, 2309–2315 (2001).

    CAS  PubMed  Google Scholar 

  114. Lutters, M. & Vogt, N. Antibiotic duration for treating uncomplicated, symptomatic lower urinary tractinfections in elderly women (Cochrane Review). Cochrane Database Syst Rev. CD001535 (2002).

  115. Tuomanen, E. & Tomasz, A. Induction of autolysis in nongrowing Escherichia coli. J. Bacteriol. 167, 1077–1080 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tuomanen, E. & Tomasz, A. Mechanism of phenotypic tolerance of nongrowing pneumococci to β-lactam antibiotics. Scand. J. Infect. Dis. Suppl. 74, 102–112 (1990). References 107, 115, 116 and 161–164 describe molecular mechanisms that are associated with antimicrobial drug tolerance. They suggest that several molecular pathways are involved, and that there is much we still do not understand in this field.

    CAS  PubMed  Google Scholar 

  117. Walson, J. L., Marshall, B., Pokhrel, B. M., Kafle, K. K. & Levy, S. B. Carriage of antibiotic-resistant fecal bacteria in Nepal reflects proximity to Kathmandu. J. Infect. Dis. 184, 1163–1169 (2001).

    CAS  PubMed  Google Scholar 

  118. Millar, M. R. et al. Carriage of antibiotic-resistant bacteria by healthy children. J. Antimicrob. Chemother. 47, 605–610 (2001).

    CAS  PubMed  Google Scholar 

  119. van de Mortel, H. J. et al. The prevalence of antibiotic-resistant faecal Escherichia coli in healthy volunteers in Venezuela. Infection 26, 292–297 (1998).

    CAS  PubMed  Google Scholar 

  120. Shanahan, P. M., Thomson, C. J. & Amyes, S. G. β-Lactam resistance in normal faecal flora from South Africa. Epidemiol. Infect. 115, 243–253 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bonten, M., Stobberingh, E., Philips, J. & Houben, A. Antibiotic resistance of Escherichia coli in fecal samples of healthy people in two different areas in an industrialized country. Infection 20, 258–262 (1992).

    CAS  PubMed  Google Scholar 

  122. Lidin-Janson, G., Falsen, E., Jodal, U., Kaijser, B. & Lincoln, K. Characteristics of antibiotic-resistant Escherichia coli in the rectum of healthy school children. J. Med. Microbiol. 10, 299–308 (1977).

    CAS  PubMed  Google Scholar 

  123. Cazzola, M., Matera, M. G. & Noschese, P. Parenteral antibiotic therapy in the treatment of lower respiratory tract infections. Strategies to minimize the development of antibiotic resistance. Pulm. Pharmacol. Ther. 13, 249–256 (2000).

    CAS  PubMed  Google Scholar 

  124. Lambert, H. P. Don't keep taking the tablets? Lancet 354, 943–945 (1999).

    CAS  PubMed  Google Scholar 

  125. Zhao, X. & Drlica, K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J. Infect. Dis. 185, 561–565 (2002).

    PubMed  Google Scholar 

  126. Martinez, J. L. & Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 44, 1771–1777 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Taddei, F., Matic, I. & Radman, M. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc. Natl Acad. Sci. USA 92, 11736–11740 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hughes, D. & Andersson, D. I. Carbon starvation of Salmonella typhimurium does not cause a general increase of mutation rates. J. Bacteriol. 179, 6688–6691 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Riesenfeld, C., Everett, M., Piddock, L. J. & Hall, B. G. Adaptive mutations produce resistance to ciprofloxacin. Antimicrob. Agents Chemother. 41, 2059–2060 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Alonso, A., Campanario, E. & Martinez, J. L. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145, 2857–2862 (1999). References 126–130 describe experiments that indicate that non-dividing or slowly multiplying bacteria might have an enhanced ability to mutate to resistance.

    CAS  PubMed  Google Scholar 

  131. Wermeille, J. et al. Failure of Helicobacter pylori eradication: is poor compliance the main cause? Gastroenterol. Clin. Biol. 26, 216–219 (2002).

    Google Scholar 

  132. Leclercq, R. Safeguarding future antimicrobial options: strategies to minimize resistance. Clin. Microbiol. Infect. 7, 18–23 (2001).

    PubMed  Google Scholar 

  133. Pradier, C., Dunais, B., Carsenti-Etesse, H. & Dellamonica, P. Pneumococcal resistance patterns in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 16, 644–647 (1997).

    CAS  PubMed  Google Scholar 

  134. Wilkinson, D. Eight years of tuberculosis research in Hlabisa — what have we learned? S. Afr. Med. J. 89, 155–159 (1999).

    CAS  PubMed  Google Scholar 

  135. Ball, P. et al. Antibiotic therapy of community respiratory tract infections: strategies for optimal outcomes and minimized resistance emergence. J. Antimicrob. Chemother. 49, 31–40 (2002).

    CAS  PubMed  Google Scholar 

  136. Adam, D. Short-course antibiotic therapy for infections with a single causative pathogen. J. Int. Med. Res. 28, 13A24A (2000).

  137. Andes, D. & Craig, W. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int. J. Antimicrob. Agents 19, 261–268 (2002).

    CAS  PubMed  Google Scholar 

  138. Craig, W. Pharmacokinetic/pharmacodynamic parameters, rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 26, 1–10 (1998).

    CAS  PubMed  Google Scholar 

  139. Forest, A. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob. Agents Chemother. 37, 1073–1081 (1993).

    Google Scholar 

  140. Grange, J. M. Mycobacteria and Human Disease (Edward Arnold, London, 1988).

    Google Scholar 

  141. Eliopoulos, G. M. & Moellering, R. C. Jr. Antibiotic synergism and antimicrobial combinations in clinical infections. Rev. Infect. Dis. 4, 282–293 (1982).

    CAS  PubMed  Google Scholar 

  142. Lynch, J. P. Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest 119, 373S–384S (2001).

    PubMed  Google Scholar 

  143. Banerjee, D. & Stableforth, D. The treatment of respiratory pseudomonas infection in cystic fibrosis: what drug and which way? Drugs 60, 1053–1064 (2000).

    CAS  PubMed  Google Scholar 

  144. Graham, D. Y. et al. Metronidazole containing quadruple therapy for infection with metronidazole resistant Helicobacter pylori: a prospective study. Aliment Pharmacol. Ther. 14, 745–750 (2000).

    CAS  PubMed  Google Scholar 

  145. Mebis, J. et al. Decreasing antibiotic resistance of enterobacteriaceae by introducing a new antibiotic combination therapy for neutropenic fever patients. Leukemia 12, 1627–1629 (1998).

    CAS  PubMed  Google Scholar 

  146. Mouton, J. W. Combination therapy as a tool to prevent emergence of bacterial resistance. Infection 27, S24–S28 (1999).

    PubMed  Google Scholar 

  147. Howe, R. A., Spencer, R. C. Cotrimoxazole. Rationale for re-examining its indications for use. Drug Saf. 14, 213–218 (1996).

    CAS  PubMed  Google Scholar 

  148. Gupta, K. Addressing antibiotic resistance. Am. J. Med. 113, 29S–34S (2000).

    Google Scholar 

  149. Mereghetti, L., Marquet-van der Mee, N., Loulergue, J., Rolland, J. C. & Audurier, A. Pseudomonas aeruginosa from cystic fibrosis patients: study using whole cell RAPD and antibiotic susceptibility. Pathol. Biol. (Paris) 46, 319–324 (1998).

    CAS  Google Scholar 

  150. Mitchison, D. A. Basic mechanisms of chemotherapy. Chest 76, 771–781 (1979).

    CAS  PubMed  Google Scholar 

  151. Mitchison, D. A. Mechanisms of tuberculosis chemotherapy. J. Pharm. Parmacol. 49, 31–36 (1997).

    CAS  Google Scholar 

  152. Rand, J. D., Danby, S. G., Greenway, D. L. & England, R. R. Increased expression of the multidrug efflux genes acrAB occurs during slow growth of Escherichia coli. FEMS Microbiol Lett. 207, 91–95 (2002).

    CAS  PubMed  Google Scholar 

  153. Williams, M. D., Ouyang, T. X. & Flickinger, M. C. Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Mol. Microbiol. 11, 1029–1043 (1994).

    CAS  PubMed  Google Scholar 

  154. Gustavsson, N., Diez, A. & Nystrom, T. The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol. Microbiol. 43, 107–117 (2002).

    CAS  PubMed  Google Scholar 

  155. Selinger, D. W. et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnol. 18, 1262–1268 (2000).

    CAS  Google Scholar 

  156. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    CAS  PubMed  Google Scholar 

  157. Sudre, P., ten Dam, G. & Kochi, A. Tuberculosis: a global overview of the situation today. Bull. World Health Org. 70, 149–159 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Perez-Stable, E. J. & Hopewell, P. C. Current tuberculosis treatment regimens. Clin. Chest Med. 10, 323–339 (1989).

    CAS  PubMed  Google Scholar 

  159. Kremer, L. S. & Besra, G. S. Current status and future development of antitubercular chemotherapy. Expert Opin. Investig. Drugs 11, 1033–1049 (2002).

    CAS  PubMed  Google Scholar 

  160. Craig, W. A. & Ebert, S. C. Killing and regrowth of bacteria in vitro: A review. Scand. J. Infect. Dis. 74, 63–70 (1991).

    Google Scholar 

  161. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503–514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Moyed, H. S. & Bertrand, K. P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Novak, R., Henriques, B., Charpentier, E., Normark, S. & Tuomanen, E. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 399, 590–593 (1999).

    CAS  PubMed  Google Scholar 

  164. Piddock, L. J. & Walters, R. N. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob. Agents Chemother. 36, 819–825 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rodionov, D. G. & Ishiguro, E. E. Direct correlation between overproduction of guanosine 3′,5′-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli. J. Bacteriol. 177, 4224–4229 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kucers, A. & Bennett, N. M. The Use of Antibiotics: Comprehensive Review 4th edn (Lippincott, Philadelphia, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Coates.

Related links

Related links

FURTHER INFORMATION

US Centers for Disease Control

US Food and Drug Administration

Wellcome Trust Sanger Institute

Glossary

ANTIMICROBIAL AGENTS

This term includes antibiotics and chemically derived agents.

RESISTANCE TO ANTIMICROBIAL AGENTS

A microbe that survives, for example, treatment with an antimicrobial agent (at or above the MIC) by altering its genome is resistant to that drug. The progeny of that microbe will also be genetically resistant to the agent.

LATENT

Existing but hidden.

CLINICALLY LATENT BACTERIA

A hidden infection with a pathogen that might involve microbial growth, which is balanced by host control mechanisms, so that the infection remains below the threshold of infectious disease expression. Conversely, the pathogen might be non-replicating. It is not usually possible to distinguish between replicating and non-replicating bacteria in vivo.

ANTIBIOTICS

Naturally derived antimicrobial agents.

INFECTION

The multiplication and growth of pathogens in host tissues or on host epithelia.

GROWTH

Accumulation of biomass.

MULTIPLICATION

Genomic growth and segregation into a new self-propagating unit.

SURVIVAL

Maintenance of viability.

DORMANCY

A reversible state of low metabolic activity in a unit that maintains viability. The non-culturable form of Micrococcus luteus is an example of the dormant state.

RESUSCITATION

Transition from a temporary state in which the specified unit had lost the capacity to multiply, to a state in which multiplication can take place.

INFECTIOUS DISEASE

When an infection causes a disease, such as bacterial pneumonia. It is usually associated with the potential to transmit the causative pathogen to other people.

STATIONARY PHASE

This is a growth phase that is slow or non-multiplying and is observed in vitro. Stationary phase bacteria are widely used in in vitro models.

VIABLE

Capable of multiplication.

TOLERANCE TO ANTIMICROBIAL AGENT

A microbe that survives treatment with an antimicrobial agent (at or above the minimum inhibitory concentration (MIC)) without altering its genome is said to be tolerant. For example, multiplying log-phase Mycobacterium tuberculosis is killed by sub-μg per ml concentrations of rifampicin. However, when the growth of the organism slows, it can survive. In other words, it tolerates higher concentrations of rifampicin; in certain situations one thousand times the MIC. The survivors, or persisters, become highly sensitive to rifampicin again when they re-enter the log-phase.

PERSISTENCE

The continued viability of a pathogen after treatment with an antimicrobial agent. The bacteria might be clinically latent, or might cause an infectious disease.

CULTURABLE

Capable of detectable multiplication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, A., Hu, Y., Bax, R. et al. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1, 895–910 (2002). https://doi.org/10.1038/nrd940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing