Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytochrome p450 enzymes in the generation of commercial products

Key Points

  • Cytochrome P450 (CYP) enzymes have been considered primarily in the context of drug metabolism as part of the development process, with the exceptions of fungal CYP51 (infections) and the aromatase CYP19 (hormonal cancers) as targets for inhibition.

  • Human CYPs are also potential targets in pathways that generate undesirable amounts of metabolites of endogenous chemicals as well as products of some carcinogenic xenobiotics.

  • An attractive use of CYPs is in the use of natural or randomly mutated CYPs to generate libraries of chemical metabolites for screening for use as drugs or other useful products.

  • Human CYPs can also be integrated into the discovery process, in terms of activating pro-drugs in the body.

  • Agricultural and associated applications include the use of CYPs in transgenic plants to alter resistance to pesticides, to generate products useful to the host plants and to generate colours or useful industrial products.

Abstract

Cytochrome P450 enzymes are remarkably diverse oxygenation catalysts that are found throughout nature. Although most of the interest in the pharmaceutical industry has focused on the role of cytochrome P450s in drug development, these enzymes also offer potential in the discovery not only of drugs, but also of other useful chemicals. Potential applications range from the use of cytochrome P450s as drug targets, to the use of randomly generated mutants of cytochrome P450s to produce libraries of new chemicals and drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some reactions known to be catalysed by CYP enzymes.
Figure 2: Cytochrome P450 reactions used to synthesize drugs.
Figure 3: Strategy for random mutation of a hypothetical CYP gene in Streptomyces to discover new antibiotics.
Figure 4: CYP reactions with commercial potential.

Similar content being viewed by others

References

  1. Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and Biochemistry 2nd edn (Plenum, New York, 1995).This monograph (2nd edition) is still the best single reference collection of general articles about various aspects of P450s.

    Book  Google Scholar 

  2. Guengerich, F. P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Guengerich, F. P. in Cytochrome P450 2nd edn (ed. Ortiz de Montellano, P. R.) 473–535 (Plenum, New York, 1995).

    Book  Google Scholar 

  4. Rendic, S. & Di Carlo, F. J. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 29, 413–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ito, K., Iwatsubo, T., Kanamitsu, S., Nakajima, Y. & Sugiyama, Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu. Rev. Pharmacol. Toxicol. 38, 461–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Peterson, D. H. Microbial transformations of steroids. I. Introduction of oxygen at carbon-11 of progesterone. J. Am. Chem. Soc. 74, 5933–5936 (1952).

    Article  CAS  Google Scholar 

  7. Serizawa, N. et al. Microbial hydroxylation of ML-236B (compactin) and monacolin K (MB-530B). J. Antibiot. (Tokyo) 36, 604–607 (1983).

    Article  CAS  Google Scholar 

  8. Falck, J. R. et al. Practical, enantiospecific syntheses of 14,15-EET and leukotoxin B (vernolic acid). Tetrahedron Lett. 42, 4131–4133 (2001).

    Article  CAS  Google Scholar 

  9. Shafiee, A. & Hutchinson, C. R. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J. Bacteriol. 170, 1548–1553 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersen, J. F. & Hutchinson, C. R. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J. Bacteriol. 174, 725–735 (1992).This is one of several references cited here from Hutchinson's laboratory, describing the CYP reactions that are involved in the biosynthesis of some important antibiotics; see also references 10–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersen, J. F., Tatsuta, K., Gunji, H., Ishiyama, T. & Hutchinson, C. R. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 32, 1905–1913 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Shen, B. & Hutchinson, C. R. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 32, 6656–6663 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, B. & Hutchinson, C. R. Triple hydroxylation of tetracenomycin A2 to tetracenomycin C in Streptomyces glaucescens: overexpression of the tcmG gene in Streptomyces lividans and characterization of the tetracenomycin A2 oxygenase. J. Biol. Chem. 269, 30726–30733 (1994).

    CAS  PubMed  Google Scholar 

  14. Schmidt-Dannert, C. Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40, 13125–13136 (2001).

    Article  CAS  Google Scholar 

  15. Powell, K. A. et al. Directed evolution and biocatalysis. Angew. Chem. Int. Edn Engl. 40, 3948–3959 (2001).

    Article  CAS  Google Scholar 

  16. Schmidt-Dannert, C. Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnol. 18, 750–753 (2000).This paper describes an interesting approach to the generation of new forms of natural products through random mutagenesis/screening approaches applied to pathways.

    Article  CAS  Google Scholar 

  17. Jennewein, S., Rithner, C. D. Williams, R. M. & Croteau, R. B. Taxol biosyntheis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl Acad. Sci. USA 98, 13595–13600 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Jannewein, S. & Croteau, R. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl. Microbiol. Biotechnol. 57, 13–19 (2001).

    Article  Google Scholar 

  19. Schuler, M. A. The role of cytochrome P450 monooxygenases in plant–insect interactions. Plant Physiol. 112, 1411–1419 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brodie, A. M. H. Aromatase inhibitors in the treatment of breast cancer. J. Steroid Biochem. Mol. Biol. 49, 281–287 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Vanden Bossche, H., Koymans, L. & Moereels, H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol. Ther. 67, 79–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Bailey, D. G., Spence, J. D., Munoz, C. & Arnold, J. M. O. Interaction of citrus juices with felodipine and nifedipine. Lancet 337, 268–269 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Langouët, S. et al. Inhibition of CYP1A2 and CYP3A4 by oltipraz results in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture. Cancer Res. 55, 5574–5579 (1995).

    PubMed  Google Scholar 

  24. Chun, Y.-J., Kim, S., Kim, D., Lee, S.-K. & Guengerich, F. P. A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res. 61, 8164–8170 (2001).

    CAS  PubMed  Google Scholar 

  25. Guengerich, F. P., Chun, Y.-J. & Kim, D. Cytochrome P450 1B1: A target for inhibition in anticarcinogenesis strategies. Mutation Res. (in the press).

  26. Strömstedt, M., Rozman, D. & Waterman, M. R. The ubiquitously expressed human CYP51 cDNA encodes lanosterol 14α-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch. Biochem. Biophys. 329, 73–81 (1996).

    Article  PubMed  Google Scholar 

  27. Makita, K., Falck, J. R. & Capdevila, J. H. Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system. FASEB J. 10, 1456–1463 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Hiroi, T., Imaoka, S. & Funae, Y. Dopamine formation from tyramine by CYP2D6. Biochem. Biophys. Res. Commun. 249, 838–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Bumpus, J. A., Tien, M., Wright, D. & Aust, S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228, 1434–1436 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Li, S. & Wackett, L. P. Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 185, 443–451 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Li, S. & Wackett, L. P. Reductive dehalogenation by cytochrome P450cam: substrate binding and catalysis. Biochemistry 32, 9355–9361 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Manchester, J. I. & Ornstein, R. L. Enzyme-catalyzed dehalogenation of pentachloroethane: why F87W-cytochrome P450cam is faster than wild type. Protein Eng. 8, 801–807 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Jones, J. P., O'Hare, E. J. & Wong, L. L. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450cam). Eur. J. Biochem. 268, 1460–1467 (2001).This recent work from Wong's group is one of the more marked improvements of bacterial CYP101 through rational design for use in bioremediation.

    Article  CAS  PubMed  Google Scholar 

  34. Guengerich, F. P., Kim, D.-H. & Iwasaki, M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 4, 168–179 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Guengerich, F. P. Cytochrome P450 proteins and potential utilization in biodegradation. Environ. Health Perspect. 103 (Suppl. 5), 25–28 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Q.-S., Schwaneberg, U., Fischer, P. & Schmid, R. D. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6, 1531–1536 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Gillam, E. M. J., Notley, L. M., Cai, H., DeVoss, J. J. & Guengerich, F. P. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39, 13817–13824 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Farinas, E. T., Schwaneberg, U., Glieder, A. & Arnold, F. H. Directed evolution of a cytochrome P450 monoxygenase for alkane oxidation. Adv. Synth. Catal. 343, 601–606 (2001).This report from Arnold's lab describes the use of bacterial CYP102 as a template for improvement by random mutagenesis for potentially useful applications in octane hydroxylation.

    Article  CAS  Google Scholar 

  39. Li, Q.-S. et al. Rational evolution of a medium chain-specific cytochrome P-450 BM-3 mutant. Biochim. Biophys. Acta 1545, 114–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Tijet, N., Schneider, C., Muller, B. L. & Brash, A. R. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Arch. Biochem. Biophys. 386, 281–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ensley, B. D. et al. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222, 167–169 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Murdock, D., Ensley, B. D., Serdar, C. & Thalen, M. construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology (N Y) 11, 381–386 (1993).

    Article  CAS  Google Scholar 

  43. Bialy, H. Biotechnology, bioremediation, and blue genes. Nature Biotechnol. 15, 110 (1997).

    Article  CAS  Google Scholar 

  44. Boyd, D. R., Sharma, N. D. & Allen, C. C. R. Aromatic dioxygenases: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12, 564–573 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Gillam, E. M. J. et al. Formation of indigo by recombinant mammalian cytochrome P450. Biochem. Biophys. Res. Commun. 265, 469–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura, K., Martin, M. V. & Guengerich, F. P. Random mutagenesis of cytochrome P450 2A6 and screening with indole oxidation products. Arch. Biochem. Biophys. 395, 25–31 (2001).Human CYP2A6 mutants were selected from biased random libraries and evaluated on the basis of their abilities to produce dyes from indole and synthetic indoles — these dyes can be evaluated as kinase inhibitors.

    Article  CAS  PubMed  Google Scholar 

  47. Adachi, J. et al. Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem. 276, 31475–31478 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Hoessel, R. et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biol. 1, 60–67 (1999).

    Article  CAS  Google Scholar 

  49. Leclerc, S. et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. J. Biol. Chem. 276, 251–260 (2001).This paper describes some targets for the indigo derivatives produced in references 36,37,45 and 46 (kinases).

    Article  CAS  PubMed  Google Scholar 

  50. Holton, T. A. et al. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366, 276–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Gillam, E. M. J., Notley, L. M., Devoss, J., Guengerich, F. P. & Volkov, A. A. Pigment production by cells having introduced P450 sequence sequence. AN Patent 152850 (2001).

  52. Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp. Biochem. C. Pharmacol. Toxicol. Endocrinol. Physiol. 121, 5–14 (1998).

    Article  CAS  Google Scholar 

  53. Guengerich, F. P. Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate–cytochrome P-450 reductase. Biochemistry 17, 3633–3639.

  54. Barnes, H. J., Arlotto, M. P. & Waterman, M. R. Expression and enzymatic activity of recombinant cytochrome P450 17α-hydroxylase in Escherichia coli. Proc. Natl Acad. Sci. USA 88, 5597–5601 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Parikh, A., Gillam, E. M. J. & Guengerich, F. P. Drug metabolism by Escherichia coli expressing human cytochromes P450. Nature Biotechnol. 15, 784–788 (1997).

    Article  CAS  Google Scholar 

  56. Guengerich, F. P., Gillam, E. M. J. & Shimada, T. New applications of bacterial systems to problems in toxicology. Crit. Rev. Toxicol. 26, 551–583 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Loida, P. J. & Sligar, S. G. Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation. Protein Eng. 6, 207–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Bradshaw, W. H., Conrad, H. E., Corey, E. J., Gunsalus, I. C. & Lednicer, D. Degradation of (+)-camphor. J. Am. Chem. Soc. 81, 5007 (1959).

    Article  Google Scholar 

  59. Bell, S. G., Harford-Cross, C. F. & Wong, L.-L. Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng. 14, 797–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Bell, S. G. et al. Butane and propane oxidation by engineered cytochrome P450cam . J. Chem. Soc. Chem. Commun. 490–491 (2002).

  61. Brakmann, S. Discovery of superior enzymes by directed molecular evolution. Chembiochem 2, 865–871 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Parikh, A., Josephy, P. D. & Guengerich, F. P. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry 38, 5283–5289 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Yun, C.-H., Miller, G. P. & Guengerich, F. P. Rate-determining steps in phenacetin oxidations by human cytochrome P450 1A2 and selected mutants. Biochemistry 39, 11319–11329 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Yun, C.-H. & Guengerich, F. P. Oxidations of p-alkoxyacylanilides by human cytochrome P450 1A2. Biochemistry 40, 4521–4530 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Joo, H., Lin, Z. L. & Arnold, F. H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670–673 (1999).This work from Arnold's laboratory involved the use of random mutagenesis of bacterial CYP101 to improve its efficiency in an 'unusual reaction', and involved some innovative screens.

    Article  CAS  PubMed  Google Scholar 

  66. Lindberg, R. L. P. & Negishi, M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339, 632–634 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Kronbach, T., Larabee, T. M. & Johnson, E. F. Hybrid cytochromes P-450 identify a substrate binding domain in P-450IIC5 and P-450IIC4. Proc. Natl Acad. Sci. USA 86, 8262–8265 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Brock, B. J. & Waterman, M. R. The use of random chimeragenesis to study structure/function properties of rat and human P450c17. Arch. Biochem. Biophys. 373, 401–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Farinas, E. T., Bulter, T. & Arnold, F. H. Directed enzyme evolution. Curr. Opin. Biotechnol. 12, 545–551 (2001).

    Article  CAS  Google Scholar 

  70. Chen, L. & Waxman, D. J. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 55, 581–589 (1995).

    CAS  PubMed  Google Scholar 

  71. Vaid, T. P. & Lewis, N. S. The use of 'electronic nose' sensor responses to predict the inhibition activity of alcohols on the cytochrome P-450 catalyzed p-hydroxylation of aniline. Bioorg. Med. Chem. 8, 795–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Shumyantseva, V. V. et al. Construction and characterization of bioelectrocatalytic sensors based on cytochromes P450. J. Inorg. Biochem. 87, 185–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Yano, J. K. et al. Crystal structure of a thermophilic cytochrome P450 from the Archaeon Sulfolobus solfataricus. J. Biol. Chem. 275, 31086–31092 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Park, S.-Y. et al. Crystallization and preliminary X-ray diffraction analysis of a cytochrome P450 (CYP119) from Sulfolobus solfataricus. Acta Crystallogr. D 56, 1173–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Hodgson, E. Genetically modified plants and human health risks: can additional research reduce uncertainties and increase public confidence? Toxicol. Sci. 63, 153–156 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US Public Health Service grants.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

AH receptor

CDK5

CYP1B1

CYP2A6

CYP2E1

CYP3A4

CYP7A

CYP19

CYP51

GSK3

NADPH cytochrome P450 reductase

Medscape DrugInfo

cortisone

pravastatin

Taxol

FURTHER INFORMATION

Cytochrome P450 Homepage

Glossary

CYTOCHROME P450

A family of genes that encode haem proteins, which usually have monooxygenase catalytic activity. Abbreviated as 'CYP' (gene-family designation) or 'P450'. Humans have 55–60 CYP genes, and the number in other species varies from as few as 3 in Saccharomyces cerevisiae to nearly 300 in Arabodopsis thaliana. Bacteria, on the other hand, vary from having no CYP genes (Escherichia coli) to about 20 such genes (Mycobacterium tuberculosis).

XENOBIOTIC

A chemical that is found in the body due to exposure to substances not synthesized within or necessary to the body, including drugs.

ENDOGENOUS CHEMICAL

A chemical that is normally produced in the body, or is necessary for life and is usually present; for example, vitamins.

OXYGENASE

An enzyme that inserts one or two atoms of oxygen into a substrate (monoxygenases and dioxygenases, respectively). These processes are among the most common to be involved in the metabolism of both endogenous and xenobiotic chemicals.

BIOREMEDIATION

The use of organisms to remove pollutant chemicals.

RANDOM MUTAGENESIS

(Also referred to as 'directed evolution' or 'molecular breeding'.) The process of nonspecifically changing a gene (a CYP) in one or more codons to produce an uncharacterized mixture of mutated genes, followed by selection and screening for genes that yield products with a desired catalytic activity (or enhanced levels of the inherent function of the original gene).

LIBRARY

A large mixture of chemicals or genes, many of which might be uncharacterized, from which members with desired properties can be selected.

BIOSENSOR

A device that can detect specific molecules — in this case, drugs.

THERMOPHILES

Bacteria that live at high temperatures (usually from he Kingdom archaebacteria).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guengerich, F. Cytochrome p450 enzymes in the generation of commercial products. Nat Rev Drug Discov 1, 359–366 (2002). https://doi.org/10.1038/nrd792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing