Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulators of apoptosis: suitable targets for immune therapy of cancer

Key Points

  • The clinical application of immunotherapy against cancer is rapidly moving forward in multiple areas, including the adoptive transfer of antitumour-reactive T cells and the use of 'therapeutic' vaccines. The latter aims at inducing cytotoxic T lymphocytes (CTLs) specific for tumour-associated antigens presented by cancer cells in the context of human leukocyte antigen (HLA) molecules.

  • Surprisingly, until recently only limited attention has been focused on identifying the most suitable targets for the induction of clinically relevant anticancer immune responses, the delineation of the most effective epitopes within these antigens and, finally, inclusion of sets of peptide epitopes best suited for targeting the disease in question.

  • The vast majority of malignancies are characterized by defects in apoptosis signalling, which is mediated by two group of apoptosis regulators: the BCL2 family (for example, BCL2, BCL-XL and MCL1) and the inhibitor of apoptosis proteins (IAP), such as survivin or melanoma IAP.

  • Such apoptosis regulators are therefore crucial cellular factors contributing to the pathogenesis and progression of cancer. Consequently, they represent very attractive targets for the design of new anticancer drugs, such as antisense oligonucleotides and small-molecule BCL2 inhibitors.

  • Notably, recently spontaneous cellular immune responses against these proteins have been identified as frequent features in cancer patients. Here, we summarize current knowledge of IAP and BCL2 family proteins as T-cell antigens, report the results of the first exploratory trials using these antigens for immunotherapy and discuss future opportunities, such as simultaneous targeting of several proteins or combination with conventional chemotherapy, because their expression in tumours is correlated with drug resistance and/or poor prognosis.

  • Immunotherapy based on survivin, BCL2 or MCL1 might also compromise endothelial-cell viability and interfere with tumour angiogenesis. Targeting survivin or BCL2 family members in angiogenic immunotherapy might therefore deliver two distinct and potentially synergistic treatment modalities using a common procedure.

  • In conclusion, a multi-epitope vaccine targeting regulators of apoptosis seems to be a promising, universal antitumour vaccine, which addresses both the tumour and the tumour stroma. Moreover, it synergistically boosts the effects of conventional cytotoxic therapies or radiation.

Abstract

Harnessing the immune system in the battle against cancer has been the focus of tremendous research efforts during the past two decades. Several means for achieving this goal, including adoptive transfer of tumour-reactive T cells, systemic or localized administration of immune modulating cytokines and the use of 'therapeutic' vaccines, have been explored. Anti-apoptotic molecules that enhance the survival of cancer cells and facilitate their escape from cytotoxic therapies represent prime candidates as vaccination antigens. Notably, spontaneous cellular immune responses against these proteins have frequently been identified in cancer patients. Here, we summarize current knowledge of IAP and BCL2 family proteins as T-cell antigens, report the results of the first explorative trial using these antigens in therapeutic vaccinations against cancer and discuss future opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the interaction between tumour cells and CD8+ cytotoxic T cells and T-cell properties exploited for antigen-specific T-cell detection.
Figure 2: Apoptotic pathways.
Figure 3: Therapeutic strategies: co-targeting chemotherapy.
Figure 4: The role of survivin in angiogenesis.

Similar content being viewed by others

References

  1. Van den Eynde, B. J. & Boon, T. Tumor antigens recognized by T lymphocytes. Int. J. Clin. Lab. Res. 27, 81–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Andersen, M. H., Pedersen, L. O., Becker, J. C. & thor Straten, P. Identification of a cytotoxic T lymphocyte response to the apoptose inhibitor protein survivin in cancer patients. Cancer Res. 61, 869–872 (2001). First description of natural immunity against survivin in cancer patients.

    CAS  PubMed  Google Scholar 

  3. Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Smyth, M. J., Godfrey, D. I. & Trapani, J. A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).

    Article  CAS  Google Scholar 

  5. Jocham, D. et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363, 594–599 (2004). Data from the first Phase III vaccination trial suggesting that therapeutic vaccination might have an impact on disease.

    Article  CAS  PubMed  Google Scholar 

  6. Sosman, J. A. & Sondak, V. K. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert. Rev. Vaccines. 2, 353–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Melief, C. J. et al. Strategies for immunotherapy of cancer. Adv. Immunol. 75, 235–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Novellino, L., Castelli, C. & Parmiani, G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 54, 187–207 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Riker, A. et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126, 112–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, K. H. et al. Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J. Immunol. 161, 4183–4194 (1998).

    CAS  PubMed  Google Scholar 

  11. Pawelec, G., Zeuthen, J. & Kiessling, R. Escape from host-antitumor immunity. Crit. Rev. Oncog. 8, 111–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann, F. et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur. J. Immunol. 25, 340–347 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z. et al. Molecular analysis of the HLA-A2 antigen loss by melanoma cells SK-MEL- 29.1.22 and SK-MEL-29.1.29. Cancer Res. 58, 2149–2157 (1998).

    CAS  PubMed  Google Scholar 

  14. Jager, E., Jager, D. & Knuth, A. Antigen-specific immunotherapy and cancer vaccines. Int. J. Cancer 106, 817–820 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Hadzantonis, M. & O'Neill, H. Review: dendritic cell immunotherapy for melanoma. Cancer Biother. Radiopharm. 14, 11–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Brinkman, J. A., Fausch, S. C., Weber, J. S. & Kast, W. M. Peptide-based vaccines for cancer immunotherapy. Expert. Opin. Biol. Ther. 4, 181–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Klinman, D. M., Currie, D., Gursel, I. & Verthelyi, D. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 199, 201–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Walden, P. & Sterry, W. New and emerging vaccination strategies for prevention and treatment of dermatological diseases. Expert. Rev. Vaccines. 3, 421–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Schadendorf, D. Melanoma vaccines. Drug News Perspect. 13, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Strengell, M. et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-γ production in human NK and T cells. J. Immunol. 170, 5464–5469 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Coulie, P. G. et al. Cytolytic T-cell responses of cancer patients vaccinated with a MAGE antigen. Immunol. Rev. 188, 33–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Shangary, S. & Johnson, D. E. Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia 17, 1470–1481 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Reed, J. C. Apoptosis-based therapies. Nature Rev. Drug Discov. 1, 111–121 (2002). Strategies aimed at inhibiting the expression or functions of anti-apoptotic proteins have gained considerable therapeutic attention in cancer — for example, antisense oligonucleotides or small-molecule inhibitors.

    Article  CAS  Google Scholar 

  24. Makin, G. & Hickman, J. A. Apoptosis and cancer chemotherapy. Cell Tissue Res. 301, 143–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Longley, D. B. & Johnston, P. G. Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, R., Emi, M., Tanabe, K. & Toge, T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 101, 2491–2502 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wacheck, V. et al. Bcl-X(L) antisense oligonucleotides radiosensitise colon cancer cells. Br. J. Cancer 89, 1352–1357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, S., Yang, D. & Lippman, M. E. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin. Oncol. 30, 133–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Falkson, C. I. et al. Phase III trial of dacarbazine versus dacarbazine with interferon α-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon α-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J. Clin. Oncol. 16, 1743–1751 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, D. C. & Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Reed, J. C. Apoptosis-targeted therapies for cancer. Cancer Cell 3, 17–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Byrd, J. C. et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 99, 1038–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Islam, A. et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19, 617–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Swana, H. S., Grossman, D., Anthony, J. N., Weiss, R. M. & Altieri, D. C. Tumor content of the antiapoptosis molecule survivin and recurrence of bladder cancer. N. Engl. J. Med. 341, 452–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kawasaki, H. et al. Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 58, 5071–5074 (1998).

    CAS  PubMed  Google Scholar 

  38. Altieri, D. C. Validating survivin as a cancer therapeutic target. Nature Rev. Cancer 3, 46–54 (2003). An in-depth review, which describes the potential applicability of survivin in the clinic.

    Article  CAS  Google Scholar 

  39. Olie, R. A. et al. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res. 60, 2805–2809 (2000).

    CAS  PubMed  Google Scholar 

  40. Gazzaniga, P. et al. Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of superficial bladder cancer. Ann. Oncol. 14, 85–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fulda, S., Wick, W., Weller, M. & Debatin, K. M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Med. 8, 808–815 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Altieri, D. C., Marchisio, P. C. & Marchisio, C. Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. Lab. Invest. 79, 1327–1333 (1999).

    CAS  PubMed  Google Scholar 

  43. Ambrosini, G., Adida, C., Sirugo, G. & Altieri, D. C. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J. Biol. Chem. 273, 11177–11182 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Adida, C. et al. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood 96, 1921–1925 (2000).

    CAS  PubMed  Google Scholar 

  45. Grossman, D., McNiff, J. M., Li, F. & Altieri, D. C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J. Invest Dermatol. 113, 1076–1081 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Velculescu, V. E. et al. Analysis of human transcriptomes. Nature Genet. 23, 387–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, D., Welm, A. & Bishop, J. M. Cell division and cell survival in the absence of survivin. Proc. Natl Acad. Sci. USA 101, 15100–15105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Schmitz, M. et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res. 60, 4845–4849 (2000).

    CAS  PubMed  Google Scholar 

  50. Andersen, M. H. et al. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 61, 5964–5968 (2001).

    CAS  PubMed  Google Scholar 

  51. Reker, S. et al. HLA-B35-restricted immune responses against survivin in cancer patients. Int. J. Cancer 108, 937–941 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Casati, C. et al. The apoptosis inhibitor protein Survivin induces tumor-specific CD8(+) and CD4(+) T cells in colorectal cancer patients. Cancer Res. 63, 4507–4515 (2003).

    CAS  PubMed  Google Scholar 

  53. Reker, S. et al. Identification of novel Survivin-derived CTL epitopes. Cancer Biol. Ther. 3, (2004).

  54. Schmidt, S. M. et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 102, 571–576 (2003). Survivin-specific CTL generated from healthy donors or leukaemia patients elicited cytolytic activity against a large number of tumour cells of different origin.

    Article  CAS  PubMed  Google Scholar 

  55. Coughlin, C. M., Vance, B. A., Grupp, S. A. & Vonderheide, R. H. RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103, 2046–2054 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. thor Straten, P., Guldberg, P., Grønbæk, K., Zeuthen, J. & Becker, J. C. In situ T-cell responses against melanoma comprise high numbers of locally expanded T-cell clonotypes. J. Immunol. 163, 443–447 (1999).

    CAS  PubMed  Google Scholar 

  57. Otto, K. et al. Therapy-induced T cell responses against the universal tumor antigen survivin. Vaccine 23, 884–889 (2004).

    Article  CAS  Google Scholar 

  58. Pisarev, V. et al. Full-length dominant-negative survivin for cancer immunotherapy. Clin. Cancer Res. 9, 6523–6533 (2003).

    CAS  PubMed  Google Scholar 

  59. Tsuruma, T. et al. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J. Transl. Med. 2, 19 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kasof, G. M. & Gomes, B. C. Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem. 276, 3238–3246 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Vucic, D., Stennicke, H. R., Pisabarro, M. T., Salvesen, G. S. & Dixit, V. M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol. 10, 1359–1366 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Ashhab, Y., Alian, A., Polliack, A., Panet, A. & Ben Yehuda, D. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 495, 56–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Schmollinger, J. C. et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc. Natl Acad. Sci. USA 100, 3398–3403 (2003). First description of ML-IAP/livin as a tumour-associated antigen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andersen, M. H., Becker, J. C. & thor Straten, P. Identification of an HLA-A3 restricted CTL epitope from ML-IAP. J. Invest. Dermatol. 122, 1336–1337 (2004).

    Article  PubMed  Google Scholar 

  65. Andersen, M. H., Reker, S., Becker, J. C. & thor Straten, P. The melanoma inhibitor of apoptosis protein: a target for spontaneous cytotoxic T cell responses. J. Invest. Dermatol. 122, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. D'Souza, S. et al. Circulating Melan-A/Mart-1 specific cytolytic T lymphocyte precursors in HLA-A2+ melanoma patients have a memory phenotype. Int. J. Cancer 78, 699–706 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Jäger, E. et al. Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals. Melanoma Res. 6, 419–425 (1996).

    Article  PubMed  Google Scholar 

  68. Griffioen, M., Borghi, M., Schrier, P. I. & Osanto, S. Detection and quantification of CD8(+) T cells specific for HLA-A*0201-binding melanoma and viral peptides by the IFN-γ-ELISPOT assay. Int. J. Cancer 93, 549–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Rudin, C. M. et al. A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann. Oncol. 13, 539–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Reed, J. C. et al. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell Biochem. 60, 23–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Hua, C. et al. Mechanism of bcl-2 activation in human follicular lymphoma. Oncogene 5, 233–235 (1990).

    CAS  PubMed  Google Scholar 

  72. Schimmer, A. D., Munk-Pedersen, I., Minden, M. D. & Reed, J. C. Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr. Treat. Options. Oncol. 4, 211–218 (2003).

    Article  PubMed  Google Scholar 

  73. Wang, H. G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl Acad. Sci. USA 93, 7063–7068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coultas, L. & Strasser, A. The role of the Bcl-2 protein family in cancer. Semin. Cancer Biol. 13, 115–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Krajewska, M. et al. Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am. J. Pathol. 148, 1567–1576 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zapata, J. M. et al. Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res. Treat. 47, 129–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Tang, L. et al. Expression of apoptosis regulators in cutaneous malignant melanoma. Clin. Cancer Res. 4, 1865–1871 (1998).

    CAS  PubMed  Google Scholar 

  78. Andersen, M. H. et al. Immunogenicity of Bcl-2 in cancer patients. Blood 105, 728–734 (2005). First description of the natural immunity against a member of the BCL2 family in cancer patients.

    Article  CAS  PubMed  Google Scholar 

  79. Andersen, M. H., Becker, J. C. & thor Straten, P. The anti-apoptotic member of the Bcl-2 family Mcl-1 is a CTL target in cancer patients. Leukemia 19, 484–485, (2005). First description of the natural immunity against MCL1 in cancer patients.

    Article  CAS  PubMed  Google Scholar 

  80. Andersen, M. H., Reker, S., Kvistborg, P., Becker, J. C. & thor Straten, P. Spontaneous immunity against Bcl-XL in cancer patients. submit f. pub (2005). First description of the natural immunity against a member of BCL-X L in cancer patients.

  81. Moshynska, O., Sankaran, K., Pahwa, P. & Saxena, A. Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J. Natl Cancer Inst. 96, 673–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka, K. et al. Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin. Cancer Res. 6, 127–134 (2000).

    CAS  PubMed  Google Scholar 

  83. Nakagawara, A. Molecular basis of spontaneous regression of neuroblastoma: role of neurotrophic signals and genetic abnormalities. Hum. Cell 11, 115–124 (1998).

    CAS  PubMed  Google Scholar 

  84. Cameron, R. B., Spiess, P. J. & Rosenberg, S. A. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. J. Exp. Med. 171, 249–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295–1302 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ng, W. F. et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 98, 2736–2744 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Fry, T. J. & Mackall, C. L. Interleukin-7: master regulator of peripheral T-cell homeostasis? Trends Immunol. 22, 564–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Tandle, A., Blazer, D. G., III & Libutti, S. K. Antiangiogenic gene therapy of cancer: recent developments. J. Transl. Med. 2, 22 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Niethammer, A. G. et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Med. 8, 1369–1375 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Dias, S., Shmelkov, S. V., Lam, G. & Rafii, S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99, 2532–2540 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Katoh, O. et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res. 58, 5565–5569 (1998).

    CAS  PubMed  Google Scholar 

  92. Xiang, R. et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 65, 553–561 (2005). Murine model suggesting that survivin-based vaccination target both the tumour and the tumour stroma.

    CAS  PubMed  Google Scholar 

  93. Nair, S. et al. Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102, 964–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Lange-Asschenfeldt, B. et al. The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J. Invest. Dermatol. 117, 1036–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Quinn, T. E., Thurman, G. B., Sundell, A. K., Zhang, M. & Hellerqvist, C. G. CM101, a polysaccharide antitumor agent, does not inhibit wound healing in murine models. J. Cancer Res. Clin. Oncol. 121, 253–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4, 321–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA. 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vetter, C. S. et al. Expression of stress-induced MHC class I related chain molecules on human melanoma. J. Invest. Dermatol. 118, 600–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Pedersen, L. O. et al. Differential expression of inhibitory or activating CD94/NKG2 subtypes on MART-1-reactive T cells in vitiligo versus melanoma: a case report. J. Invest. Dermatol. 118, 595–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Cormier, J. N. et al. Comparative analysis of the in vivo expression of tyrosinase, MART-1/Melan-A, and gp100 in metastatic melanoma lesions: implications for immunotherapy. J. Immunother. 21, 27–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Maeurer, M. J. et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J. Clin. Invest 98, 1633–1641 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Offringa, R., van der Burg, S. H., Ossendorp, F., Toes, R. E. & Melief, C. J. Design and evaluation of antigen-specific vaccination strategies against cancer. Curr. Opin. Immunol. 12, 576–582 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Kursar, M. et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 196, 1585–1592 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moss, P. A., Rosenberg, W. M. & Bell, J. I. The human T cell receptor in health and disease. Annu. Rev. Immunol. 10, 71–96 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Stockwin, L. H., McGonagle, D., Martin, I. G. & Blair, G. E. Dendritic cells: immunological sentinels with a central role in health and disease. Immunol. Cell Biol. 78, 91–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Castelli, C. et al. T-cell recognition of melanoma-associated antigens. J. Cell Physiol 182, 323–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Siegel, S. et al. Identification of a survivin-derived peptide that induces HLA-A*0201-restricted antileukemia cytotoxic T lymphocytes. Leukemia 18, 2046–2047 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Hirohashi, Y. et al. An HLA-A24-restricted Cytotoxic T Lymphocyte Epitope of a Tumor-associated Protein, Survivin. Clin. Cancer Res. 8, 1731–1739 (2002).

    CAS  PubMed  Google Scholar 

  110. Siegel, S., Wagner, A., Schmitz, N. & Zeis, M. Induction of antitumour immunity using survivin peptide-pulsed dendritic cells in a murine lymphoma model. Br. J. Haematol. 122, 911–914 (2003).

    Article  PubMed  Google Scholar 

  111. Andersen, M. H., Kvistborg, P., Becker, J. C. & thor Straten, P. Identification of an HLA-A1 restricted CTL epitope from Mcl-1. Leukemia 7 April 2005 [Epub ahead of print].

Download references

Acknowledgements

This work was funded in part by grants from the Danish Medical Research Council, The Danish Cancer Society and Danish Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Hald Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

Entrez Gene

Apollon

BAD

BAK

BAX

BCL2

BID

c-IAP1

c-IAP2

IL-2

IL-7

IL-12

IL-15

IL-18

IL-21

ILP2

MCL1

ML-IAP

NIAP

survivin

TLR4

XIAP

National Cancer Institute

Chronic lymphocytic cancer

melanoma

myeloma

non-small-lung cancer

Glossary

MAJOR HISTOCOMPATIBILITY COMPLEX

A complex of genetic loci in higher vertebrates that encodes a family of cellular antigens that allow the immune system to recognize self from non-self.

ADJUVANT

An agent mixed with an antigen that enhances the immune response to that antigen upon immunization.

CpG DINUCLEOTIDES

Cytosine–guanosine pairs inDNA sequences. Oligodeoxynucleotide sequences that include CpG dinucleotides and certain flanking nucleotides have been found to induce innate immune responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, M., Becker, J. & Straten, P. Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4, 399–409 (2005). https://doi.org/10.1038/nrd1717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing