Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic antagonists and conformational regulation of integrin function

Key Points

  • Members of the integrin family of adhesion molecules are non-covalently-associated α/β heterodimers that mediate cell–cell, cell–extracellular matrix and cell–pathogen interactions by binding to distinct, but often overlapping, combinations of ligands.

  • Dysregulation of integrins is involved in the pathogenesis of many disease states, from autoimmunity and thrombotic vascular diseases to cancer metastasis, and so extensive efforts have been directed towards the discovery and development of integrin antagonists for clinical applications. Integrin antagonists are already well established as therapeutics for cardiovascular disease, and applications in other therapuetic areas, including inflammatory disease, seem extremely promising.

  • Integrin ligand-binding function is tightly linked to molecular conformation. On activation, dramatic rearrangements occur in the overall spatial relationships of integrin domains. Understanding the structural basis of integrin activation in detail is essential for understanding the mechanism of antagonism by therapeutics, as well as for the design of second-generation antagonists with novel mechanisms of action.

  • This review discusses examples of the three different classes of integrin antagonists discovered so far: α/β I-like competitive antagonists, α/β I-like allosteric antagonists and α I allosteric antagonists. These examples were chosen because they illustrate particularly well the mutually beneficial relationship between integrin drug discovery and our understanding of integrin structure and function.

Abstract

Integrins are a structurally elaborate family of adhesion molecules that transmit signals bi-directionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell–cell and cell–matrix contacts, integrins participate in a wide range of biological processes, including development, tissue repair, angiogenesis, inflammation and haemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell-adhesion receptors. Recent progress in the development of integrin antagonists has resulted in their clinical application and has shed new light on integrin biology. On the basis of their mechanism of action, small-molecule integrin antagonists fall into three different classes. Each of these classes affect the equilibria that relate integrin conformational states, but in different ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrin heterodimer composition.
Figure 2: Integrin architecture.
Figure 3: Domain organization and global conformational changes of the extracellular portion of integrins.
Figure 4: Model of integrin αLβ2, which contains an I domain, bound to ICAM-1.
Figure 5: Stereo view of alternative conformations of the αM I domain.
Figure 6: Ribbon diagram of the αL I domain in complex with an α I allosteric antagonist95.
Figure 7: αIIbβ3 headpiece and critical residues for ligand binding.
Figure 8: Chemical structures of small-molecule integrin antagonists.
Figure 9: Mechanisms of inhibition and impact on integrin conformation of small-molecule antagonists.

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Humphries, M. J. Integrin structure. Biochem. Soc. Trans. 28, 311–339 (2000).

    CAS  PubMed  Google Scholar 

  4. Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002). Comprehensively reviews conformational changes of integrins with emphasis on the conformational regulation of ligand binding by I domains.

    CAS  PubMed  Google Scholar 

  5. Curley, G. P., Blum, H. & Humphries, M. J. Integrin antagonists. Cell. Mol. Life Sci. 56, 427–441 (1999).

    CAS  PubMed  Google Scholar 

  6. Scarborough, R. M. & Gretler, D. D. Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: novel parenteral and potential oral antithrombotic agents. J. Med. Chem. 43, 3453–3473 (2000).

    CAS  PubMed  Google Scholar 

  7. Varner, J. A. & Cheresh, D. A. Tumor angiogenesis and the role of vascular cell integrin αvβ3. Important Adv. Oncol. 69–87 (1996).

  8. Giblin, P. A. & Kelly, T. A. Antagonists of β2 integrin-mediated cell adhesion. Annu. Rep. Med. Chem. 36, 181–190 (2001).

    CAS  Google Scholar 

  9. Yusuf-Makagiansar, H., Anderson, M. E., Yakovleva, T. V., Murray, J. S. & Siahaan, T. J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22, 146–167 (2002).

    CAS  PubMed  Google Scholar 

  10. Bennett, J. S. Novel platelet inhibitors. Annu. Rev. Med. 52, 161–184 (2001).

    CAS  PubMed  Google Scholar 

  11. Cather, J. C. & Menter, A. Modulating T cell responses for the treatment of psoriasis: a focus on efalizumab. Expert Opin. Biol. Ther. 3, 361–370 (2003).

    CAS  PubMed  Google Scholar 

  12. Harlan, J. M. & Winn, R. K. Leukocyte–endothelial interactions: clinical trials of anti-adhesion therapy. Crit. Care Med. 30, S214–S219 (2002).

    CAS  PubMed  Google Scholar 

  13. Harlan, J. M., Winn, R. K., Vedder, N. B., Doerschuk, C. M. & Rice, C. L. in Adhesion: Its Role in Inflammatory Disease (eds Harlan, J. R. & Liu, D.) 117–150 (W. H. Freeman, New York, 1992).

    Google Scholar 

  14. Jackson, D. Y. α4 integrin antagonists. Curr. Pharm. Des. 8, 1229–1253 (2002).

    CAS  PubMed  Google Scholar 

  15. Lin, K. C. & Castro, A. C. Very late antigen 4 (VLA4) antagonists as anti-inflammatory agents. Curr. Opin. Chem. Biol. 2, 453–457 (1998).

    CAS  PubMed  Google Scholar 

  16. Liu, G. Inhibitors of LFA-1/ICAM-1 interaction: from monoclonal antibodies to small molecules. Drugs Future 26, 767–778 (2001).

    CAS  Google Scholar 

  17. Tilley, J. W., Chen, L., Sidduri, A. & Fotouhi, N. The discovery of VLA-4 antagonists. Curr. Med. Chem. Rev. (in the press).

  18. Xiong, J. -P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001). The landmark determination of the crystal structure of αvβ3, which demonstrated an unexpected V-shape, or the bent conformation.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Beglova, N., Blacklow, S. C., Takagi, J. & Springer, T. A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Struct. Biol. 9, 282–287 (2002). NMR structure determination of integrin EGF-like domains where activating and activation-dependent epitopes map. Superposition of the integrin EGF-like domains onto the structure of αvβ3 showed these epitopes buried in the bent conformation, strongly indicating that it represents the low-affinity conformation.

    CAS  PubMed  Google Scholar 

  20. Du, X. et al. Long range propagation of conformational changes in integrin αIIbβ3. J. Biol. Chem. 268, 23087–23092 (1993).

    CAS  PubMed  Google Scholar 

  21. Takagi, J., Erickson, H. P. & Springer, T. A. C-terminal opening mimics 'inside-out' activation of integrin α5β1. Nature Struct. Biol. 8, 412–416 (2001).

    CAS  PubMed  Google Scholar 

  22. Weisel, J. W., Nagaswami, C., Vilaire, G. & Bennett, J. S. Examination of the platelet membrane glycoprotein IIb–IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J. Biol. Chem. 267, 16637–16643 (1992).

    CAS  PubMed  Google Scholar 

  23. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002). EM image reconstruction, hydrodynamic and ligand-binding studies on αvβ3 revealed that low-affinity bent conformation is converted by activation to the high-affinity extended conformation, which is further stabilized by ligand binding.

    CAS  PubMed  Google Scholar 

  24. Luo, B. -H., Springer, T. A. & Takagi, J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proc. Natl Acad. Sci. USA 100, 2403–2408 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. -O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638 (1995).

    CAS  PubMed  Google Scholar 

  26. Huang, C., Zang, Q., Takagi, J. & Springer, T. A. Structural and functional studies with antibodies to the integrin β2 subunit: a model for the I-like domain. J. Biol. Chem. 275, 21514–21524 (2000).

    CAS  PubMed  Google Scholar 

  27. Springer, T. A. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc. Natl Acad. Sci. USA 94, 65–72 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L. & Springer, T. A. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031–1043 (1993).

    CAS  PubMed  Google Scholar 

  29. Michishita, M., Videm, V. & Arnaout, M. A. A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72, 857–867 (1993).

    CAS  PubMed  Google Scholar 

  30. Shimaoka, M., Lu, C., Palframan, R., von Andrian, U. H., Takagi, J. & Springer, T. A. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo. Proc. Natl Acad. Sci. USA 98, 6009–6014 (2001). An engineered disulphide bridge to lock the open conformation of the αL I domain resulted in 10,000-fold increase in ligand-binding affinity to ICAM-1.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huth, J. R. et al. NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Proc. Natl Acad. Sci. USA 97, 5231–5236 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003). Crystal structure determination of the multiple conformations of the αL I domain with distinct ligand-binding affinity demonstrated shape-shifting pathway for activation by a downward movement of the C-terminal helix.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000). The important determination of the open conformation of the α2 I domain in complex with collagen-like peptides demonstrated the significance of the conformational changes induced by ligand binding.

    CAS  PubMed  Google Scholar 

  34. Takagi, J., Kamata, T., Meredith, J., Puzon-McLaughlin, W. & Takada, Y. Changing ligand specificities of αvβ1 and αvβ3 integrins by swapping a short diverse sequence of the β subunit. J. Biol. Chem. 272, 19794–19800 (1997).

    CAS  PubMed  Google Scholar 

  35. Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  36. Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunological Rev. 186, 141–163 (2002).

    CAS  Google Scholar 

  37. Puzon-McLaughlin, W., Kamata, T. & Takada, Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin αIIbβ3. J. Biol. Chem. 275, 7795–7802 (2000).

    CAS  PubMed  Google Scholar 

  38. Kamata, T., Tieu, K. K., Springer, T. A. & Takada, Y. Amino acid residues in the αIIb subunit that are critical for ligand binding to integrin αIIbβ3 are clustered in the β-propeller model. J. Biol. Chem. 276, 44275–44283 (2001).

    CAS  PubMed  Google Scholar 

  39. Luo, B. -H., Springer, T. A. & Takagi, J. High affinity ligand binding by integrins does not involve head separation. J. Biol. Chem. 178, 17185–17189 (2003).

    Google Scholar 

  40. Lu, C., Shimaoka, M., Ferzly, M., Oxvig, C., Takagi, J. & Springer, T. A. An isolated, surface-expressed I domain of the integrin αLβ2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide. Proc. Natl Acad. Sci. USA 98, 2387–2392 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, C., Shimaoka, M., Zang, Q., Takagi, J. & Springer, T. A. Locking in alternate conformations of the integrin αLβ2 I domain with disulfide bonds reveals functional relationships among integrin domains. Proc. Natl Acad. Sci. USA 98, 2393–2398 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Alonso, J. L., Essafi, M., Xiong, J. P., Stehle, T. & Arnaout, M. A. Does the integrin αA domain act as a ligand for its βA domain? Curr. Biol. 12, R340–R342 (2002).

    CAS  PubMed  Google Scholar 

  43. Salas, A., Shimaoka, M., Chen, S., Carman, C. V. & Springer, T. A. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin LFA-1. J. Biol. Chem. 277, 50255–50262 (2002).

    CAS  PubMed  Google Scholar 

  44. Dustin, M. L. & Springer, T. A. T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    CAS  PubMed  Google Scholar 

  45. Lollo, B. A., Chan, K. W. H., Hanson, E. M., Moy, V. T. & Brian, A. A. Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells. J. Biol. Chem. 268, 21693–21700 (1993).

    CAS  PubMed  Google Scholar 

  46. Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).

    CAS  PubMed  Google Scholar 

  47. Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 'inside-out' activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002). A direct association of the αIIb and β3 cytoplasmic tails was demonstrated by NMR structure determination. The association was perturbed by talin head domain or activating mutations in the tail, supporting integrin activation by separation of the cytoplasmic tails.

    CAS  PubMed  Google Scholar 

  48. Lu, C., Takagi, J. & Springer, T. A. Association of the membrane-proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state. J. Biol. Chem. 276, 14642–14648 (2001).

    CAS  PubMed  Google Scholar 

  49. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science (in the press). FRET analysis using CFP and YFP fused to the αL and β2 cytoplasmic tails demonstrated separation of the tails in living cells on activation by chemokine and talin head domain as well as on ligand-binding to ICAM-1 in the presence of Mn2+.

  50. Bednar, R. A. et al. Identification of low molecular weight GP IIb/IIIa antagonists that bind preferentially to activated platelets. J. Pharmacol. Exp. Ther. 285, 1317–1326 (1998).

    CAS  PubMed  Google Scholar 

  51. Duggan, M. E. et al. Nonpeptide αVβ3 antagonists. 1. Transformation of a potent, integrin-selective αIIbβ3 antagonist into a potent αVβ3 antagonist. J. Med. Chem. 43, 3736–3745 (2000).

    CAS  PubMed  Google Scholar 

  52. Shih, D. T., Edelman, J. M., Horwitz, A. F., Grunwald, G. B. & Buck, C. A. Structure/function analysis of the integrin β1 subunit by epitope mapping. J. Cell Biol. 122, 1361–1371 (1993).

    CAS  PubMed  Google Scholar 

  53. Bazzoni, G., Shih, D. -T., Buck, C. A. & Hemler, M. A. Monoclonal antibody 9EG7 defines a novel β1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J. Biol. Chem. 270, 25570–25577 (1995).

    CAS  PubMed  Google Scholar 

  54. Takagi, J., Isobe, T., Takada, Y. & Saito, Y. Structural interlock between ligand-binding site and stalk-like region of β1 integrin revealed by a monoclonal antibody recognizing conformation-dependent epitope. J. Biochem. (Tokyo) 121, 914–921 (1997).

    CAS  Google Scholar 

  55. Lu, C., Ferzly, M., Takagi, J. & Springer, T. A. Epitope mapping of antibodies to the C-terminal region of the integrin β2 subunit reveals regions that become exposed upon receptor activation. J. Immunol. 166, 5629–5637 (2001).

    CAS  PubMed  Google Scholar 

  56. Du, X. et al. Ligands 'activate' integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).

    CAS  PubMed  Google Scholar 

  57. Kouns, W. C. et al. Reversible conformational changes induced in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood 80, 2539–2547 (1992).

    CAS  PubMed  Google Scholar 

  58. Honda, S. et al. Association between ligand-induced conformational changes of integrin αIIbβ3 and αIIbβ3-mediated intracellular Ca2+ signaling. Blood 92, 3675–3683 (1998).

    CAS  PubMed  Google Scholar 

  59. Muller, B., Zerwes, H. G., Tangemann, K., Peter, J. & Engel, J. Two-step binding mechanism of fibrinogen to αIIbβ3 integrin reconstituted into planar lipid bilayers. J. Biol. Chem. 268, 6800–6808 (1993).

    CAS  PubMed  Google Scholar 

  60. Huber, W. et al. Determination of kinetic constants for the interaction between the platelet glycoprotein IIb-IIIa and fibrinogen by means of surface plasmon resonance. Eur. J. Biochem. 227, 647–656 (1995).

    CAS  PubMed  Google Scholar 

  61. Bednar, B. et al. Flow cytometric measurement of kinetic and equilibrium binding parameters of arginine-glycine-aspartic acid ligands in binding to glycoprotein IIb/IIIa on platelets. Cytometry 28, 58–65 (1997).

    CAS  PubMed  Google Scholar 

  62. Murphy, N. P., Pratico, D. & Fitzgerald, D. J. Functional relevance of the expression of ligand-induced binding sites in the response to platelet GP IIb/IIIa antagonists in vivo. J. Pharmacol. Exp. Ther. 286, 945–951 (1998).

    CAS  PubMed  Google Scholar 

  63. Thibault, G. Sodium dodecyl sulfate-stable complexes of echistatin and RGD-dependent integrins: a novel approach to study integrins. Mol. Pharmacol. 58, 1137–1145 (2001).

    Google Scholar 

  64. Thibault, G., Tardif, P. & Lapalme, G. Comparative specificity of platelet αIIbβ3 integrin antagonists. J. Pharmacol. Exp. Ther. 296, 690–696 (2000).

    Google Scholar 

  65. Zolotarjova, N. I., Hollis, G. F. & Wynn, R. Unusually stable and long-lived ligand-induced conformations of integrins. J. Biol. Chem. 276, 17063–17068 (2001). References 64 and 65 describe an 'unusually' tight stabilization by α/β I-like competitive antagonists of integrin α- and β-subunit association.

    CAS  PubMed  Google Scholar 

  66. Billheimer, J. T. et al. Evidence that thrombocytopenia observed in humans treated with orally bioavailable glycoprotein IIb/IIIa antagonists is immune mediated. Blood 99, 1–7 (2002).

    Google Scholar 

  67. Peter, K., Schwarz, M., Nordt, T. & Bode, C. Intrinsic activating properties of GP IIb/IIIa blockers. Thromb. Res. 103, S21–S27 (2001).

    CAS  PubMed  Google Scholar 

  68. Frelinger, A. L., Furman, M. I., Krueger, L. A., Barnard, M. R. & Michelson, A. D. Dissociation of glycoprotein IIb/IIIa antagonists from platelets does not result in fibrinogen binding or platelet aggregation. Circulation 104, 1374–1379 (2001).

    CAS  PubMed  Google Scholar 

  69. Schneider, D. J., Taatjes, D. J. & Sobel, B. E. Paradoxical inhibition of fibrinogen binding and potentiation of α-granule release by specific types of inhibitors of glycoprotein IIb-IIIa. Cardiovasc. Res. 45, 437–446 (2000).

    CAS  PubMed  Google Scholar 

  70. Brown, E. J. & Gresham, R. D. in Structure, Function, and Regulation of Molecules Involved in Leukocyte Adhesion Vol. 1 (eds Lipsky, P. E., Rothlein, R., Kishimoto, T. K., Faanes, R. B. & Smith, C. W.) 78–91 (Springer, New York, 1993).

    Google Scholar 

  71. Varner, J. A. & Cheresh, D. A. Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730 (1996).

    CAS  PubMed  Google Scholar 

  72. Hynes, R. O. A reevaluation of integrins as regulators of angiogenesis. Nature Med. 8, 918–921 (2002).

    CAS  PubMed  Google Scholar 

  73. Engleman, V. W. et al. A peptidomimetic antagonist of the αVβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J. Clin. Invest. 99, 2284–2292 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bach, A. C. et al. Type II' to type I β-turn swap changes specificity for integrins. J. Am. Chem. Soc. 118, 293–294 (1996).

    CAS  Google Scholar 

  75. Bazzoni, G. & Hemler, M. E. Are changes in integrin affinity and conformation overemphasized? Trends Biochem. Sci. 23, 30–34 (1998).

    CAS  PubMed  Google Scholar 

  76. Honda, S. et al. Ligand binding to integrin αvβ3 requires tyrosine 178 in the αv subunit. Blood 97, 175–182 (2001).

    CAS  PubMed  Google Scholar 

  77. Legler, D. F., Wiedle, G., Ross, F. P. & Imhof, B. A. Superactivation of integrin αVβ3 by low antagonist concentrations. J. Cell Sci. 114, 1545–1553 (2001).

    CAS  PubMed  Google Scholar 

  78. Hynes, R. O. Integrins: bi-directional, allosteric, signalling machines. Cell 110, 673–687 (2002). Excellently reviews the latest developments in integrin biology and structure.

    CAS  PubMed  Google Scholar 

  79. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).

    CAS  PubMed  Google Scholar 

  80. Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).

    CAS  PubMed  Google Scholar 

  81. Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).

    CAS  PubMed  Google Scholar 

  82. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    CAS  PubMed  Google Scholar 

  83. Wang, J. -H. & Springer, T. A. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol. Rev. 163, 197–215 (1998).

    CAS  PubMed  Google Scholar 

  84. Copie, V. et al. Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J. Mol. Biol. 277, 663–682 (1998).

    CAS  PubMed  Google Scholar 

  85. Chen, L. L. et al. Identification of ligand binding sites on integrin α4β1 through chemical cross-linking. Biochemistry 37, 8743–8753 (1998).

    CAS  PubMed  Google Scholar 

  86. Irie, A., Kamata, T. & Takada, Y. Multiple loop structures critical for ligand binding of the integrin α4 subunit in the upper face of the β-propeller models. Proc. Natl Acad. Sci. USA 94, 7198–7203 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yednock, T. A. et al. α4β1 integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand. J. Biol. Chem. 270, 28740–28750 (1995).

    CAS  PubMed  Google Scholar 

  88. Chigaev, A. et al. Real-time analysis of the affinity regulation of α4-integrin: the physiologically activated receptor is intermediate in affinity between resting and Mn2+ or antibody activation. J. Biol. Chem. 276, 48670–48678 (2001).

    CAS  PubMed  Google Scholar 

  89. Dustin, M. L. & Springer, T. A. in Guidebook to the Extracellular Matrix and Adhesion Proteins (eds Kreis, T. & Vale, R.) 228–232 (Sambrook and Tooze, New York, 1999).

    Google Scholar 

  90. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  91. Gottlieb, A. et al. Effects of administration of a single dose of a humanized monoclonal antibody to CD11a on the immunobiology and clinical activity of psoriasis. J. Am. Acad. Dermatol. 42, 428–435 (2000).

    CAS  PubMed  Google Scholar 

  92. Dustin, M. L. & Springer, T. A. in Guidebook to the Extracellular Matrix and Adhesion Proteins (eds Kreis, T. & Vale, R.) 216–220 (Sambrook and Tooze, New York, 1999).

    Google Scholar 

  93. Diamond, M. S., Staunton, D. E., Marlin, S. D. & Springer, T. A. Binding of the integrin Mac-1 (CD11b/CD18) to the third Ig-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991).

    CAS  PubMed  Google Scholar 

  94. Huang, C. & Springer, T. A. A binding interface on the I domain of lymphocyte function associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J. Biol. Chem. 270, 19008–19016 (1995).

    CAS  PubMed  Google Scholar 

  95. Kallen, J. et al. Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J. Mol. Biol. 292, 1–9 (1999).

    CAS  PubMed  Google Scholar 

  96. Last-Barney, K. et al. Binding site elucidation of hydantoin-based antagonists of LFA-1 using multidisciplinary technologies: evidence for the allosteric inhibition of a protein–protein interaction. J. Am. Chem. Soc. 123, 5643–5650 (2001).

    CAS  PubMed  Google Scholar 

  97. Liu, G. et al. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J. Med. Chem. 44, 1202–1210 (2001). References 95, 96 and 97 crystallographically demonstrated that a class of small-molecule antagonists to αLβ2 bound beneath the C-terminal α-helix of the αL I domain, providing a structural basis for α I allosteric antagonists.

    CAS  PubMed  Google Scholar 

  98. Welzenbach, K., Hommel, U. & Weitz-Schmidt, G. Small molecule inhibitors induce conformational changes in the I domain and the I-like domain of lymphocyte function-associated antigen-1: molecular insights into integrin inhibition. J. Biol. Chem. 277, 10590–10598 (2002).

    CAS  PubMed  Google Scholar 

  99. Woska, J. R. Jr et al. A small-molecule antagonist of LFA-1 blocks a conformational change important for LFA-1 function. J. Leukoc. Biol. 70, 329–334 (2001).

    PubMed  Google Scholar 

  100. Shimaoka, M., Salas, A., Yang, W., Weitz-Schmidt, G. & Springer, T. A. Small molecule integrin antagonists that bind to the β2 subunit I-like domain and activate signals in one direction and block them in another. Immunity (in the press). Describes a novel mechanistic class of integrin inhibitors, α/β I-like allosteric antagonists that bind to the MIDAS of the β2 I-like domain and disrupt interdomain communication between the I and I-like domains. While blocking conformational signal transmission to the I domain, the antagonists activate the I-like domain by mimicking an internal ligand, a conserved acidic residue in the I domain linker.

  101. Fotouhi, N., Gillespie, P., Guthrie, R., Pietranico-Cole, S. & Yun, W. Diaminopropionic acid derivatives. PCT Int. Appl. Hoffmann–La Roche, Switzerland, WO0021920 (1999).

  102. Burdick, D. J. Antagonists for treatment of CD11/CD18 adhesion receptor mediated disorders. PCT Int. Appl. Genentech, USA, WO9949856 (1999).

  103. Gadek, T. R. et al. Generation of an LFA-1 antagonist by the transfer of the ICAM-1 immunoregulatory epitope to a small molecule. Science 295, 1086–1089 (2002).

    CAS  PubMed  Google Scholar 

  104. Hesterberg, P. E. et al. Rapid resolution of chronic colitis with an antibody to a gut homing integrin α4β7. Gastroenterology 111, 1373–1380 (1996).

    CAS  PubMed  Google Scholar 

  105. de Fougerolles, A. R. et al. Regulation of inflammation by collagen-binding integrins α1β1 and α2β1 in models of hypersensitivity and arthritis. J. Clin. Invest. 105, 721–729 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Doolittle, R. F. Fibrinogen and fibrin. Sci. Am. 245, 126–135 (1981).

    CAS  PubMed  Google Scholar 

  107. Henschen, A., Lottspeich, F., Kehl, M. & Southan, C. Covalent structure of fibrinogen. Ann. NY Acad. Sci. 408, 28–43 (1983).

    CAS  PubMed  Google Scholar 

  108. Springer, T. A. Predicted and experimental structures of integrins and β-propellers. Curr. Opin. Struct. Biol. 12, 802–813 (2002).

    CAS  PubMed  Google Scholar 

  109. Coleman, P. J. et al. Non-peptide αVβ3 antagonists. Part 3: identification of potent RGD mimetics incorporating novel β-amino acids as aspartic acid replacements. Bioorg. Med. Chem. Lett. 12, 31–34 (2002).

    CAS  PubMed  Google Scholar 

  110. Ward, K. W. et al. Preclinical pharmacokinetics and interspecies scaling of a novel vitronectin receptor antagonist. Drug Metab. Dispos. 27, 1232–1241 (1999).

    CAS  PubMed  Google Scholar 

  111. Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med. 7, 687–692 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Xiao and W. Yang for modelling of the αIIbβ3 headpiece, and J. Takagi, T. Vorup-Jensen, B.-H. Luo, M. Kim, G. Weitz-Schmidt, T. A. Kelly and J. W. Tilley for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

α4 integrin

β4 integrin

αvβ3

αvβ5

αIIbβ3

MAdCAM-1

VCAM-1

von Willebrand factor

Online Mendelian Inheritance in Man

Crohn's disease

multiple sclerosis

FURTHER INFORMATION

Encyclopedia of Life Sciences

integrins: signalling and disease

integrin superfamily

Glossary

INTEGRIN-EGF DOMAIN

A module in cysteine-rich repeats in the integrin β-subunit stalk region adopts a nosecone-shaped variant of the epidermal growth factor (EGF) fold, termed an integrin-EGF (I-EGF) domain.

SDS–PAGE

(Sodium dodecyl sulphate– polyacrylamide gel electrophoresis). A method for resolving a protein into its subunits and determining their separate molecular weights.

THROMBOCYTOPAENIA

A disorder in which the number of platelets is abnormally low, and which is sometimes associated with abnormal bleeding.

IMMUNOLOGICAL SYNAPSE

T-cell recognition of an antigen presenting cell (APC), which is the initial and crucial process in the antigen-specific immune response, takes place at the nanometer-scale gap of the interface between the T cell and APC. This interface is a specialized cell–cell junction, at which crucial signals to initiate and maintain the immune response are transduced from APC to T cell or vice versa. The interface is called an immunological synapse after the neuronal synapse, a segregated gap through which information is transmitted in chemical form (neurotransmitter) from one neuron to another.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimaoka, M., Springer, T. Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2, 703–716 (2003). https://doi.org/10.1038/nrd1174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing