Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cholangiocarcinoma — evolving concepts and therapeutic strategies

Key Points

  • Each anatomical subtype of cholangiocarcinoma, intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA), has a distinct epidemiology, biology, and prognosis, thus necessitating different management approaches

  • Fluorescence in situ hybridization (FISH) has improved the diagnostic performance of conventional cytology for the detection of pCCA and dCCA; several emerging diagnostic modalities, including liquid biopsy techniques, might further improve cholangiocarcinoma diagnosis

  • Neoadjuvant chemoradiotherapy followed by liver transplantation offers the best outcomes for a subset of patients with pCCA; liver transplantation might also be an option for patients with very early stage iCCA

  • Emerging evidence indicates that high-dose, conformal external-beam radiation therapy is a potential treatment option for patients with localized, unresectable iCCA

  • An enhanced understanding of the potential driver genetic aberrations in cholangiocarcinomas has heralded several novel drugs for advanced-stage disease, including FGFR inhibitors and IDH inhibitors; targeted therapy and immunotherapy combinations also hold promise

Abstract

Cholangiocarcinoma is a disease entity comprising diverse epithelial tumours with features of cholangiocyte differentiation: cholangiocarcinomas are categorized according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA). Each subtype has a distinct epidemiology, biology, prognosis, and strategy for clinical management. The incidence of cholangiocarcinoma, particularly iCCA, has increased globally over the past few decades. Surgical resection remains the mainstay of potentially curative treatment for all three disease subtypes, whereas liver transplantation after neoadjuvant chemoradiation is restricted to a subset of patients with early stage pCCA. For patients with advanced-stage or unresectable disease, locoregional and systemic chemotherapeutics are the primary treatment options. Improvements in external-beam radiation therapy have facilitated the treatment of cholangiocarcinoma. Moreover, advances in comprehensive whole-exome and transcriptome sequencing have defined the genetic landscape of each cholangiocarcinoma subtype. Accordingly, promising molecular targets for precision medicine have been identified, and are being evaluated in clinical trials, including those exploring immunotherapy. Biomarker-driven trials, in which patients are stratified according to anatomical cholangiocarcinoma subtype and genetic aberrations, will be essential in the development of targeted therapies. Targeting the rich tumour stroma of cholangiocarcinoma in conjunction with targeted therapies might also be useful. Herein, we review the evolving developments in the epidemiology, pathogenesis, and management of cholangiocarcinoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrative examples of the radiographic modalities used in the visualization of the different anatomical subtypes of cholangiocarcinoma.
Figure 2: Current clinical management algorithms for adult patients with cholangiocarcinoma.
Figure 3: Proton radiotherapy of intrahepatic cholangiocarcinoma (iCCA).
Figure 4: Evolving molecular stratification of cholangiocarcinoma (CCA) and therapeutic implications.
Figure 5: Biological rationale for the ongoing clinical trials of immunotherapies for cholangiocarcinoma.

References

  1. Rizvi, S. & Gores, G. J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145, 1215–1229 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Saha, S. K., Zhu, A. X., Fuchs, C. S. & Brooks, G. A. Forty-year trends in cholangiocarcinoma incidence in the US: intrahepatic disease on the rise. Oncologist 21, 594–599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khan, S. A. et al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J. Hepatol. 37, 806–813 (2002).

    Article  PubMed  Google Scholar 

  4. Taylor-Robinson, S. D. et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut 48, 816–820 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cardinale, V. et al. Cholangiocarcinoma: increasing burden of classifications. Hepatobiliary Surg. Nutr. 2, 272–280 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Jarnagin, W. R. et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann. Surg. 234, 507–517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barr Fritcher, E. G. et al. An optimized set of fluorescence in situ hybridization probes for detection of pancreatobiliary tract cancer in cytology brush samples. Gastroenterology 149, 1813–1824 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Gonda, T. A. et al. Mutation profile and fluorescence in situ hybridization analyses increase detection of malignancies in biliary strictures. Clin. Gastroenterol. Hepatol. 15, 913–919 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Darwish Murad, S. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 143, 88–98 (2012).

    Article  PubMed  Google Scholar 

  10. Sapisochin, G. et al. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: international retrospective study supporting a prospective assessment. Hepatology 64, 1178–1188 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Valle, J. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 362, 1273–1281 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Razumilava, N. & Gores, G. J. Cholangiocarcinoma. Lancet 383, 2168–2179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. DeOliveira, M. L. et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann. Surg. 245, 755–762 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nakeeb, A. et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann. Surg. 224, 463–473 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sripa, B. & Pairojkul, C. Cholangiocarcinoma: lessons from Thailand. Curr. Opin. Gastroenterol. 24, 349–356 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shaib, Y. & El-Serag, H. B. The epidemiology of cholangiocarcinoma. Semin. Liver Dis. 24, 115–125 (2004).

    Article  PubMed  Google Scholar 

  17. West, J., Wood, H., Logan, R. F., Quinn, M. & Aithal, G. P. Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971–2001. Br. J. Cancer 94, 1751–1758 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel, T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2, 10 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shaib, Y. H., Davila, J. A., McGlynn, K. & El-Serag, H. B. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J. Hepatol. 40, 472–477 (2004).

    Article  PubMed  Google Scholar 

  20. Alvaro, D. et al. Descriptive epidemiology of cholangiocarcinoma in Italy. Dig. Liver Dis. 42, 490–495 (2010).

    Article  PubMed  Google Scholar 

  21. Bergquist, A. & von Seth, E. Epidemiology of cholangiocarcinoma. Best Pract. Res. Clin. Gastroenterol. 29, 221–232 (2015).

    Article  PubMed  Google Scholar 

  22. Bertuccio, P. et al. A comparison of trends in mortality from primary liver cancer and intrahepatic cholangiocarcinoma in Europe. Ann. Oncol. 24, 1667–1674 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Lepage, C. et al. Trends in the incidence and management of biliary tract cancer: a French population-based study. J. Hepatol. 54, 306–310 (2011).

    Article  PubMed  Google Scholar 

  24. Jepsen, P., Vilstrup, H., Tarone, R. E., Friis, S. & Sorensen, H. T. Incidence rates of intra- and extrahepatic cholangiocarcinomas in Denmark from 1978 through 2002. J. Natl Cancer Inst. 99, 895–897 (2007).

    Article  PubMed  Google Scholar 

  25. Altekruse, S. F. et al. Geographic variation of intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, and hepatocellular carcinoma in the United States. PLoS ONE 10, e0120574 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Khan, S. A. et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J. Hepatol. 56, 848–854 (2012).

    Article  PubMed  Google Scholar 

  27. Kilander, C., Mattsson, F., Ljung, R., Lagergren, J. & Sadr-Azodi, O. Systematic underreporting of the population-based incidence of pancreatic and biliary tract cancers. Acta Oncol. 53, 822–829 (2014).

    Article  PubMed  Google Scholar 

  28. Duberg, A. S. & Hultcrantz, R. Misleading figures on trends in mortality from hepatocellular carcinoma in Europe. Hepatology 49, 336 (2009).

    Article  PubMed  Google Scholar 

  29. Torner, A. et al. The underreporting of hepatocellular carcinoma to the cancer register and a log-linear model to estimate a more correct incidence. Hepatology 65, 885–892 (2017).

    Article  PubMed  Google Scholar 

  30. Hainsworth, J. D. et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research institute. J. Clin. Oncol. 31, 217–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Varadhachary, G. R. & Raber, M. N. Cancer of unknown primary site. N. Engl. J. Med. 371, 757–765 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Bridgewater, J. et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol. 60, 1268–1289 (2014).

    Article  PubMed  Google Scholar 

  33. Rimola, J. et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 50, 791–798 (2009).

    Article  PubMed  Google Scholar 

  34. Iavarone, M. et al. Contrast enhanced CT-scan to diagnose intrahepatic cholangiocarcinoma in patients with cirrhosis. J. Hepatol. 58, 1188–1193 (2013).

    Article  PubMed  Google Scholar 

  35. Kim, S. H. et al. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J. Comput. Assist. Tomogr. 36, 704–709 (2012).

    Article  PubMed  Google Scholar 

  36. Vilgrain, V. Staging cholangiocarcinoma by imaging studies. HPB 10, 106–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Charatcharoenwitthaya, P., Enders, F. B., Halling, K. C. & Lindor, K. D. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 48, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Levy, C. et al. The value of serum CA 19–19 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig. Dis. Sci. 50, 1734–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Patel, A. H., Harnois, D. M., Klee, G. G., LaRusso, N. F. & Gores, G. J. The utility of CA 19–9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am. J. Gastroenterol. 95, 204–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Nehls, O., Gregor, M. & Klump, B. Serum and bile markers for cholangiocarcinoma. Semin. Liver Dis. 24, 139–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Choi, S. B. et al. The prognosis and survival outcome of intrahepatic cholangiocarcinoma following surgical resection: association of lymph node metastasis and lymph node dissection with survival. Ann. Surg. Oncol. 16, 3048–3056 (2009).

    Article  PubMed  Google Scholar 

  42. Endo, I. et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann. Surg. 248, 84–96 (2008).

    Article  PubMed  Google Scholar 

  43. Li, Y. Y. et al. Prognostic value of cirrhosis for intrahepatic cholangiocarcinoma after surgical treatment. J. Gastrointest. Surg. 15, 608–613 (2011).

    Article  PubMed  Google Scholar 

  44. Pascher, A., Jonas, S. & Neuhaus, P. Intrahepatic cholangiocarcinoma: indication for transplantation. J. Hepatobiliary Pancreat. Surg. 10, 282–287 (2003).

    Article  PubMed  Google Scholar 

  45. Robles, R. et al. Spanish experience in liver transplantation for hilar and peripheral cholangiocarcinoma. Ann. Surg. 239, 265–271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sapisochin, G. et al. “Very early” intrahepatic cholangiocarcinoma in cirrhotic patients: should liver transplantation be reconsidered in these patients? Am. J. Transplant 14, 660–667 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kiefer, M. V. et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer 117, 1498–1505 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Park, S. Y. et al. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin. Radiol. 66, 322–328 (2011).

    Article  PubMed  Google Scholar 

  49. Vogl, T. J. et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: results and prognostic factors governing treatment success. Int. J. Cancer 131, 733–740 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kuhlmann, J. B. et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur. J. Gastroenterol. Hepatol. 24, 437–443 (2012).

    CAS  PubMed  Google Scholar 

  51. Hoffmann, R. T. et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc. Intervent. Radiol. 35, 105–116 (2012).

    Article  PubMed  Google Scholar 

  52. Rafi, S. et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc. Intervent. Radiol. 36, 440–448 (2013).

    Article  PubMed  Google Scholar 

  53. Masselli, G., Manfredi, R., Vecchioli, A. & Gualdi, G. MR imaging and MR cholangiopancreatography in the preoperative evaluation of hilar cholangiocarcinoma: correlation with surgical and pathologic findings. Eur. Radiol. 18, 2213–2221 (2008).

    Article  PubMed  Google Scholar 

  54. Ruys, A. T. et al. Radiological staging in patients with hilar cholangiocarcinoma: a systematic review and meta-analysis. Br. J. Radiol. 85, 1255–1262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohamadnejad, M. et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center experience. Gastrointest. Endosc. 73, 71–78 (2011).

    Article  PubMed  Google Scholar 

  56. Heimbach, J. K., Sanchez, W., Rosen, C. B. & Gores, G. J. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB 13, 356–360 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Trikudanathan, G., Navaneethan, U., Njei, B., Vargo, J. J. & Parsi, M. A. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest. Endosc. 79, 783–789 (2014).

    Article  PubMed  Google Scholar 

  58. Dudley, J. C. et al. Next-generation sequencing and fluorescence in situ hybridization have comparable performance characteristics in the analysis of pancreaticobiliary brushings for malignancy. J. Mol. Diagn. 18, 124–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Tanaka, A. et al. Clinical features, response to treatment, and outcomes of IgG4-related sclerosing cholangitis. Clin. Gastroenterol. Hepatol. 15, 920–926 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Li, L. et al. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology 60, 896–907 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Arbelaiz, A. et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology http://dx.doi.org/10.1002/hep.29291 (2017).

  62. Severino, V. et al. Extracellular vesicles in bile as markers of malignant biliary stenoses. Gastroenterology 153, 495–504 (2017).

    Article  PubMed  Google Scholar 

  63. Wan, J. C. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, J. et al. Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma. Gastroenterology 152, S1041–S1042 (2017).

    Article  Google Scholar 

  65. Nagorney, D. M. & Kendrick, M. L. Hepatic resection in the treatment of hilar cholangiocarcinoma. Adv. Surg. 40, 159–171 (2006).

    Article  PubMed  Google Scholar 

  66. Hemming, A. W., Mekeel, K., Khanna, A., Baquerizo, A. & Kim, R. D. Portal vein resection in management of hilar cholangiocarcinoma. J. Am. Coll. Surg. 212, 604–613 (2011).

    Article  PubMed  Google Scholar 

  67. Hong, Y. K. et al. The efficacy of portal vein embolization prior to right extended hemihepatectomy for hilar cholangiocellular carcinoma: a retrospective cohort study. Eur. J. Surg. Oncol. 37, 237–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Schnitzbauer, A. A. et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann. Surg. 255, 405–414 (2012).

    Article  PubMed  Google Scholar 

  69. Tschuor, C. et al. Salvage parenchymal liver transection for patients with insufficient volume increase after portal vein occlusion — an extension of the ALPPS approach. Eur. J. Surg. Oncol. 39, 1230–1235 (2013).

    Article  PubMed  Google Scholar 

  70. Rosen, C. B., Heimbach, J. K. & Gores, G. J. Liver transplantation for cholangiocarcinoma. Transpl. Int. 23, 692–697 (2010).

    Article  PubMed  Google Scholar 

  71. Valle, J. W. et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann. Oncol. 25, 391–398 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Okusaka, T. et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br. J. Cancer 103, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Primrose, J. N. et al. Adjuvant capecitabine for biliary tract cancer: the BILCAP randomized study [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 4006 (2017).

    Article  Google Scholar 

  74. Edeline, J. et al. Gemox versus surveillance following surgery of localized biliary tract cancer: results of the PRODIGE 12-ACCORD 18 (UNICANCER GI) phase III trial. J. Clin. Oncol. 35, 225–225 (2017).

    Article  Google Scholar 

  75. Crane, C. H. & Koay, E. J. Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer 122, 1974–1986 (2016).

    Article  PubMed  Google Scholar 

  76. Pan, C. C. et al. Radiation-associated liver injury. Int. J. Radiat. Oncol. Biol. Phys. 76, S94–S100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kavanagh, B. D. et al. Radiation dose-volume effects in the stomach and small bowel. Int. J. Radiat. Oncol. Biol. Phys. 76, S101–S107 (2010).

    Article  PubMed  Google Scholar 

  78. Hong, T. S. et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Clin. Oncol. 34, 460–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Tse, R. V. et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Clin. Oncol. 26, 657–664 (2008).

    Article  PubMed  Google Scholar 

  80. Tao, R. et al. Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J. Clin. Oncol. 34, 219–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Patel, S., Ragab, O. & Kamrava, M. Another solution that enables ablative radiotherapy for large liver tumors: percutaneous interstitial high-dose rate brachytherapy. Cancer 122, 2766 (2016).

    Article  PubMed  Google Scholar 

  82. Mukewar, S. et al. Endoscopically inserted nasobiliary catheters for high dose-rate brachytherapy as part of neoadjuvant therapy for perihilar cholangiocarcinoma. Endoscopy 47, 878–883 (2015).

    Article  PubMed  Google Scholar 

  83. Hammad, A. Y. et al. Is Radiotherapy warranted following intrahepatic cholangiocarcinoma resection? The impact of surgical margins and lymph node status on survival. Ann. Surg. Oncol. 23, 912–920 (2016).

    Article  PubMed  Google Scholar 

  84. Horgan, A. M., Amir, E., Walter, T. & Knox, J. J. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J. Clin. Oncol. 30, 1934–1940 (2012).

    Article  PubMed  Google Scholar 

  85. Jia, A. Y. et al. Intensity-modulated radiotherapy following null-margin resection is associated with improved survival in the treatment of intrahepatic cholangiocarcinoma. J. Gastrointest. Oncol. 6, 126–133 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Ben-Josef, E. et al. SWOG S0809: a phase II Intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J. Clin. Oncol. 33, 2617–2622 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Shinohara, E. T., Mitra, N., Guo, M. & Metz, J. M. Radiotherapy is associated with improved survival in adjuvant and palliative treatment of extrahepatic cholangiocarcinomas. Int. J. Radiat. Oncol. Biol. Phys. 74, 1191–1198 (2009).

    Article  PubMed  Google Scholar 

  88. Pollom, E. L. et al. Does radiotherapy still have a role in unresected biliary tract cancer? Cancer Med. 6, 129–141 (2017).

    Article  PubMed  Google Scholar 

  89. Foo, M. L., Gunderson, L. L., Bender, C. E. & Buskirk, S. J. External radiation therapy and transcatheter iridium in the treatment of extrahepatic bile duct carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 39, 929–935 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Ghafoori, A. P. et al. Radiotherapy in the treatment of patients with unresectable extrahepatic cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 81, 654–659 (2011).

    Article  PubMed  Google Scholar 

  91. Mansour, J. C. et al. Hilar cholangiocarcinoma: expert consensus statement. HPB 17, 691–699 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nakamura, H. et al. Genomic spectra of biliary tract cancer. Nat. Genet. 47, 1003–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Borad, M. J. et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 10, e1004135 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Graham, R. P. et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum. Pathol. 45, 1630–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Ross, J. S. et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 19, 235–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, Y. M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sia, D. et al. Massive parallel sequencing uncovers actionable FGFR2PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun. 6, 6087 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Gingras, M. C. et al. Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Rep. 14, 907–919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yachida, S. et al. Genomic sequencing identifies ELF3 as a driver of ampullary carcinoma. Cancer Cell 29, 229–240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chan-On, W. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat. Genet. 45, 1474–1478 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Farshidfar, F. et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 18, 2780–2794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Churi, C. R. et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS ONE 9, e115383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Borger, D. R. et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17, 72–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Kipp, B. R. et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum. Pathol. 43, 1552–1558 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Rizvi, S. et al. A hippo and fibroblast growth factor receptor autocrine pathway in cholangiocarcinoma. J. Biol. Chem. 291, 8031–8047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Javle, M. A phase 2 study of BGJ398 in patients (pts) with advanced or metastatic FGFR-altered cholangiocarcinoma (CCA) who failed or are intolerant to platinum-based chemotherapy [abstract]. J. Clin. Oncol. 34 (Suppl. 4), 335 (2016).

    Article  Google Scholar 

  107. Perera, T. P. S. et al. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol. Cancer Ther. 16, 1010–1020 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Acquaviva, J. et al. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism. Mol. Cancer Res. 12, 1042–1054 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Gu, T. L. et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS ONE 6, e15640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Saborowski, A. et al. Mouse model of intrahepatic cholangiocarcinoma validates FIG–ROS as a potent fusion oncogene and therapeutic target. Proc. Natl Acad. Sci. USA 110, 19513–19518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhu, A. X. et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets. Ann. Surg. Oncol. 21, 3827–3834 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bekaii-Saab, T. et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J. Clin. Oncol. 29, 2357–2363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bridgewater, J. et al. A phase 1b study of selumetinib in combination with cisplatin and gemcitabine in advanced or metastatic biliary tract cancer: the ABC-04 study. BMC Cancer 16, 153 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Goeppert, B. et al. BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma. Mod. Pathol. 27, 1028–1034 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sia, D. et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 144, 829–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Pant, S. et al. A phase I dose escalation study of oral c-MET inhibitor tivantinib (ARQ 197) in combination with gemcitabine in patients with solid tumors. Ann. Oncol. 25, 1416–1421 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Goyal, L. et al. A phase 2 and biomarker study of cabozantinib in patients with advanced cholangiocarcinoma. Cancer 123, 1979–1988 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. El-Khoueiry, A. B. et al. S0941: a phase 2 SWOG study of sorafenib and erlotinib in patients with advanced gallbladder carcinoma or cholangiocarcinoma. Br. J. Cancer 110, 882–887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. O'Rourke, C. J., Munoz-Garrido, P., Aguayo, E. L. & Andersen, J. B. Epigenome dysregulation in cholangiocarcinoma. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbadis.2017.06.014 (2017).

  123. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Burris, H. et al. The first reported results of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a phase I study of patients with advanced IDH1-mutant solid tumors, including gliomas. Mol. Cancer. Ther. 14 (12 Suppl. 2), PL04-05 (2015).

    Google Scholar 

  126. Amatangelo, M. D. et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 130, 732–741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kats, L. M. et al. A pharmacogenomic approach validates AG-221 as an effective and on-target therapy in IDH2 mutant AML. Leukemia 31, 1466–1470 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Thomas, D. & Majeti, R. Optimizing next-generation AML therapy: activity of mutant IDH2 inhibitor AG-221 in preclinical models. Cancer Discov. 7, 459–461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saha, S. K. et al. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC dependence in intrahepatic cholangiocarcinoma. Cancer Discov. 6, 727–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nakagawa, S. et al. Enhancer of zeste homolog 2 (EZH2) promotes progression of cholangiocarcinoma cells by regulating cell cycle and apoptosis. Ann. Surg. Oncol. 20 (Suppl. 3), S667–S675 (2013).

    Article  PubMed  Google Scholar 

  132. Tang, B. et al. EZH2 elevates the proliferation of human cholangiocarcinoma cells through the downregulation of RUNX3. Med. Oncol. 31, 271 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. Nakagawa, S. et al. Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells. Oncol. Rep. 31, 983–988 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Fujimoto, A. et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat. Commun. 6, 6120 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Luchini, C. et al. PBRM1 loss is a late event during the development of cholangiocarcinoma. Histopathology 71, 375–382 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sasaki, M., Nitta, T., Sato, Y. & Nakanuma, Y. Loss of ARID1A expression presents a novel pathway of carcinogenesis in biliary carcinomas. Am. J. Clin. Pathol. 145, 815–825 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Baradari, V., Hopfner, M., Huether, A., Schuppan, D. & Scherubl, H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J. Gastroenterol. 13, 4458–4466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Kwak, T. W., Kim, D. H., Jeong, Y. I. & Kang, D. H. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells. J. Nanobiotechnol. 13, 60 (2015).

    Article  CAS  Google Scholar 

  141. Sriraksa, R. & Limpaiboon, T. Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma — cell line findings. Asian Pac. J. Cancer Prev. 14, 2503–2508 (2013).

    Article  PubMed  Google Scholar 

  142. Wang, B. et al. Sodium valproate inhibits the growth of human cholangiocarcinoma in vitro and in vivo. Gastroenterol. Res. Pract. 2013, 374593 (2013).

    PubMed  PubMed Central  Google Scholar 

  143. Iwahashi, S. et al. Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II. Anticancer Res. 34, 5187–5191 (2014).

    CAS  PubMed  Google Scholar 

  144. Kawamata, F. et al. Intracellular localization of mesothelin predicts patient prognosis of extrahepatic bile duct cancer. Int. J. Oncol. 41, 2109–2118 (2012).

    Article  PubMed  Google Scholar 

  145. Nomura, R. et al. Mesothelin expression is a prognostic factor in cholangiocellular carcinoma. Int. Surg. 98, 164–169 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Golan, T. et al. Overall survival and clinical characteristics of BRCA-associated cholangiocarcinoma: a multicenter retrospective study. Oncologist 22, 804–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martin-Liberal, J. et al. The expanding role of immunotherapy. Cancer Treat. Rev. 54, 74–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Feldman, S. A., Assadipour, Y., Kriley, I., Goff, S. L. & Rosenberg, S. A. Adoptive cell therapy — tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors. Semin. Oncol. 42, 626–639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Palmer, W. C. & Patel, T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J. Hepatol. 57, 69–76 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Santana-Davila, R., Bhatia, S. & Chow, L. Q. Harnessing the immune system as a therapeutic tool in virus-associated cancers. JAMA Oncol. 3, 106–112 (2017).

    Article  PubMed  Google Scholar 

  151. Ott, P. A. & Hodi, F. S. The B7-H1/PD-1 pathway in cancers associated with infections and inflammation: opportunities for therapeutic intervention. Chin. Clin. Oncol. 2, 7 (2013).

    PubMed  Google Scholar 

  152. Tashiro, H. & Brenner, M. K. Immunotherapy against cancer-related viruses. Cell Res. 27, 59–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Brivio, S., Cadamuro, M., Strazzabosco, M. & Fabris, L. Tumor reactive stroma in cholangiocarcinoma: the fuel behind cancer aggressiveness. World J. Hepatol. 9, 455–468 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Raggi, C., Invernizzi, P. & Andersen, J. B. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J. Hepatol. 62, 198–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Hasita, H. et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 101, 1913–1919 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Mertens, J. C. et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 73, 897–907 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Rizvi, S. et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J. Biol. Chem. 289, 22835–22849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Aguiar, P. N. et al. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy 9, 499–506 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Carbognin, L. et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 10, e0130142 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  163. Bang, Y. J. et al. Safety and efficacy of pembrolizumab (MK-3475) in patients (pts) with advanced biliary tract cancer: interim results of KEYNOTE-028 [abstract]. Eur. J. Cancer 51 (Suppl. 3), S112 (2015).

    Article  Google Scholar 

  164. Gani, F. et al. Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma. Ann. Surg. Oncol. 23, 2610–2617 (2016).

    Article  PubMed  Google Scholar 

  165. Fontugne, J. et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget 8, 24644–24651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Naboush, A., Roman, C. A. & Shapira, I. Immune checkpoint inhibitors in malignancies with mismatch repair deficiency: a review of the state of the current knowledge. J. Investig. Med. 65, 754–758 (2017).

    Article  PubMed  Google Scholar 

  168. Silva, V. W. et al. Biliary carcinomas: pathology and the role of DNA mismatch repair deficiency. Chin. Clin. Oncol. 5, 62 (2016).

    Article  PubMed  Google Scholar 

  169. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Andresen, K. et al. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology 61, 1651–1659 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Lankisch, T. O. et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology 53, 875–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Metzger, J. et al. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut 62, 122–130 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Courtney Hoover for her excellent secretarial support. The work of the authors is supported by the US NIH (grants DK59427 to G.J.G., 1R03CA212877-01 to R.K.K., and DK84567 to the Mayo Center for Cell Signalling in Gastroenterology), and by the Mayo Foundation. S.R. has also received support from the Cholangiocarcinoma Foundation and from the Mayo Center for Cell Signalling in Gastroenterology (Pilot & Feasibility Award P30DK084567).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Gregory J. Gores.

Ethics declarations

Competing interests

R.K.K has received research support from Agios, Eli Lilly, Merck, and Novartis, via her institution, for conduct of clinical trials in cholangiocarcinoma. S.R., S.A.K., C.L.H., and G.J.G. declare no competing interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Ongoing biomarker-driven, target-therapy trials enrolling patients with advanced-stage CCA (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, S., Khan, S., Hallemeier, C. et al. Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15, 95–111 (2018). https://doi.org/10.1038/nrclinonc.2017.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.157

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer