Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modern approaches to HLA-haploidentical blood or marrow transplantation

An Erratum to this article was published on 31 December 2015

Key Points

  • HLA-haploidentical allogeneic blood or bone-marrow transplantation (haploBMT) has historically been associated with poor outcomes, owing to high rates of graft failure and graft-versus-host disease (GVHD)

  • Several transplantation platforms have been developed that successfully overcome these historical barriers to haploBMT; three main approaches have been used extensively to conduct haploBMT procedures in patients

  • T-cell depletion with 'megadose' CD34+ cells results in exceptionally low rates of GVHD, but is associated with poor T-cell function and thus high nonrelapse mortality (NRM), predominantly owing to infection

  • The GIAC protocol, which involves in vivo modulation of T-cell-replete allografts, produces essentially universal engraftment with limited relapse and favourable survival, albeit with high rates of GVHD, particularly chronic GVHD

  • Use of high-dose, post-transplantation cyclophosphamide after T-cell-replete allografting results in low rates of GVHD and NRM and favourable immune reconstitution, with somewhat higher rates of relapse, particularly after reduced-intensity conditioning

  • No standard-of-care currently exists, as no completed prospective randomized studies have, thus far, compared any of these haploBMT approaches with each other or with transplantation approaches using other donor types

Abstract

Allogeneic blood or bone-marrow transplantation (alloBMT) is a potentially curative treatment for a variety of haematological malignancies and nonmalignant diseases. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with alloBMT using other donors. Although only approximately one-third of patients have an HLA-matched sibling, nearly all patients have HLA-haploidentical related donors. Early studies using HLA-haploidentical alloBMT resulted in unacceptably high rates of graft rejection and graft-versus-host disease (GVHD), leading to high nonrelapse mortality and consequently poor survival. Several novel approaches to HLA-haploidentical alloBMT have yielded encouraging results with high rates of successful engraftment, effective GVHD control and favourable outcomes. In fact, outcomes of several retrospective comparative studies seem similar to those seen using other allograft sources, including those of HLA-matched-sibling alloBMT. In this Review, we provide an overview of the three most-developed approaches to HLA-haploidentical alloBMT: T-cell depletion with 'megadose' CD34+ cells; granulocyte colony-stimulating factor-primed allografts combined with intensive pharmacological immunosuppression, including antithymocyte globulin; and high-dose, post-transplantation cyclophosphamide. We review the preclinical and biological data supporting each approach, results from major clinical studies, and completed or ongoing clinical studies comparing these approaches with other alloBMT platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HLA-haploidentical donors.
Figure 2: Components of each transplantation platform.

Similar content being viewed by others

References

  1. Thomas, E. et al. Bone-marrow transplantation (first of two parts). N. Engl. J. Med. 292, 832–843 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Ottinger, H., Grosse-Wilde, M., Schmitz, A. & Grosse-Wilde, H. Immunogenetic marrow donor search for 1012 patients: a retrospective analysis of strategies, outcome and costs. Bone Marrow Transplant. 14, S34–S38 (1994).

    PubMed  Google Scholar 

  3. Gragert, L. et al. HLA match likelihoods for haematopoietic stem-cell grafts in the U. S. registry. N. Engl. J. Med. 371, 339–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Powles, R. L. et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet 1, 612–615 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Beatty, P. G. et al. Marrow transplantation from related donors other than HLA-identical siblings. N. Engl. J. Med. 313, 765–771 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Anasetti, C. et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N. Engl. J. Med. 320, 197–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Anasetti, C. et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum. Immunol. 29, 79–91 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Szydlo, R. et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J. Clin. Oncol. 15, 1767–1777 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Guinan, E. C. et al. Transplantation of anergic histoincompatible bone marrow allografts. N. Engl. J. Med. 340, 1704–1714 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Sykes, M. et al. Mixed lymphohaemopoietic chimerism and graft-versus-lymphoma effects after non-myeloablative therapy and HLA-mismatched bone-marrow transplantation. Lancet 353, 1755–1759 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ogawa, H. et al. Unmanipulated HLA 2–3 antigen-mismatched (haploidentical) bone marrow transplantation using only pharmacological GVHD prophylaxis. Exp. Hematol. 36, 1–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. von Reyn Cream, L., Ehmann, W. C., Rybka, W. B. & Claxton, D. F. Sirolimus in unmanipulated haploidentical cell transplantation. Bone Marrow Transplant. 42, 765–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Peccatori, J. et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia 29, 396–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Rizzieri, D. A. et al. Partially matched, nonmyeloablative allogeneic transplantation: clinical outcomes and immune reconstitution. J. Clin. Oncol. 25, 690–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Andre-Schmutz, I. et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet 360, 130–137 (2002).

    Article  PubMed  Google Scholar 

  16. Bastien, J. P., Roy, J. & Roy, D. C. Selective T-cell depletion for haplotype-mismatched allogeneic stem cell transplantation. Semin. Oncol. 39, 674–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Kasamon, Y. L. et al. Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol. Blood Marrow Transplant. 16, 482–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. et al. Who is the best donor for a related HLA haplotype-mismatched transplant? Blood 124, 843–850 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, D. P. et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 107, 3065–3073 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X. H. et al. HLA-haploidentical blood and bone marrow transplantation with anti-thymocyte globulin: long-term comparison with HLA-identical sibling transplantation. Blood Cells Mol. Dis. 43, 98–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Bashey, A. et al. T-cell-replete HLA-haploidentical haematopoietic transplantation for haematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J. Clin. Oncol. 31, 1310–1316 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Raiola, A. M. et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol. Blood Marrow Transplant 20, 1573–1579 (2014).

    Article  PubMed  Google Scholar 

  23. Di Stasi, A. et al. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leucocyte antigen-matched unrelated and related donors. Biol. Blood Marrow Transplant. 20, 1975–1981 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dupont, B., O'Reilly, R. J., Pollack, M. S. & Good, R. A. Histocompatibility testing for clinical bone marrow transplantation and prospects for identification of donors other than HLA genotypically identical siblings. Haematol. Blood Transfus. 25, 121–134 (1980).

    CAS  PubMed  Google Scholar 

  25. Hansen, J. A., Clift, R. A., Mickelson, E. M., Nisperos, B. & Thomas, E. D. Marrow transplantation from donors other than HLA identical siblings. Hum. Immunol. 2, 31–40 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Przepiorka, D. et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 15, 825–828 (1995).

    CAS  PubMed  Google Scholar 

  27. Korngold, R. & Sprent, J. Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J. Exp. Med. 148, 1687–1698 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Kernan, N. A. et al. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 68, 770–773 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Reisner, Y., Ravid, A. & Sharon, N. Use of soybean agglutinin for the separation of mouse B and T lymphocytes. Biochem. Biophys Res. Commun. 72, 1585–1591 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Reisner, Y., Itzicovitch, L., Meshorer, A. & Sharon, N. Haemopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins. Proc. Natl Acad. Sci. USA 75, 2933–2936 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reisner, Y., Kapoor, N., O'Reilly, R. J. & Good, R. A. Allogeneic bone marrow transplantation using stem cells fractionated by lectins: VI, in vitro analysis of human and monkey bone marrow cells fractionated by sheep red blood cells and soybean agglutinin. Lancet 2, 1320–1324 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Reisner, Y. et al. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 2, 327–331 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Reisner, Y. et al. Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 61, 341–348 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Jabado, N. et al. Bone marrow transplantation from genetically HLA-nonidentical donors in children with fatal inherited disorders excluding severe combined immunodeficiencies: use of two monoclonal antibodies to prevent graft rejection. Paediatrics 98, 420–428 (1996).

    CAS  Google Scholar 

  35. Ash, R. C. et al. Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant. 7, 443–452 (1991).

    CAS  PubMed  Google Scholar 

  36. Suchin, E. J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Reisner, Y. et al. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation. Proc. Natl Acad. Sci. USA 83, 4012–4015 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kernan, N. A., Flomenberg, N., Dupont, B. & O'Reilly, R. J. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation 43, 842–847 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Schwartz, E., Lapidot, T., Gozes, D., Singer, T. S. & Reisner, Y. Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlates with eradication of host clonable T cells and alloreactive cytotoxic precursors. J. Immunol. 138, 460–465 (1987).

    CAS  PubMed  Google Scholar 

  40. Lapidot, T. et al. Booster irradiation to the spleen following total body irradiation. A new immunosuppressive approach for allogeneic bone marrow transplantation. J. Immunol. 141, 2619–2624 (1988).

    CAS  PubMed  Google Scholar 

  41. Lapidot, T., Terenzi, A., Singer, T. S., Salomon, O. & Reisner, Y. Enhancement by dimethyl myleran of donor type chimerism in murine recipients of bone marrow allografts. Blood 73, 2025–2032 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Terenzi, A. et al. Enhancement of T cell-depleted bone marrow allografts in mice by thiotepa. Transplantation 50, 717–720 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Cobbold, S. P., Martin, G., Qin, S. & Waldmann, H. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 323, 164–166 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Lapidot, T. et al. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity. Proc. Natl Acad. Sci. USA 87, 4595–4599 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bachar-Lustig, E., Rachamim, N., Li, H. W., Lan, F. & Reisner, Y. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat. Med. 1, 1268–1273 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Rachamim, N. et al. Tolerance induction by “megadose” haematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation 65, 1386–1393 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Reisner, Y., Gur, H., Reich-Zeliger, S., Martelli, M. F. & Bachar-Lustig, E. Haematopoietic stem cell transplantation across major genetic barriers: tolerance induction by megadose CD34 cells and other veto cells. Ann. N. Y. Acad. Sci. 996, 72–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Aversa, F. et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 84, 3948–3955 (1994).

    CAS  PubMed  Google Scholar 

  49. Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Aversa, F. et al. Full haplotype-mismatched haematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J. Clin. Oncol. 23, 3447–3454 (2005).

    Article  PubMed  Google Scholar 

  51. Ciceri, F. et al. A survey of fully haploidentical haematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood 112, 3574–3581 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Lang, P. et al. Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells Mol. Dis. 33, 281–287 (2004).

    Article  PubMed  Google Scholar 

  53. Klingebiel, T. et al. Results and factors influencing outcome after fully haploidentical haematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of centre size: an analysis on behalf of the Acute Leukemia and Paediatric Disease Working Parties of the European Blood and Marrow Transplant group. Blood 115, 3437–3446 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Walker, I. et al. Canadian multicentre pilot trial of haploidentical donor transplantation. Blood Cells Mol. Dis. 33, 222–226 (2004).

    Article  PubMed  Google Scholar 

  55. Waller, E. K. et al. Facilitating T-cell immune reconstitution after haploidentical transplantation in adults. Blood Cells Mol. Dis. 33, 233–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Mehta, J. et al. Bone marrow transplantation from partially HLA-mismatched family donors for acute leukemia: single-centre experience of 201 patients. Bone Marrow Transplant. 33, 389–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Handgretinger, R. New approaches to graft engineering for haploidentical bone marrow transplantation. Semin. Oncol. 39, 664–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Bethge, W. A. et al. Haploidentical allogeneic haematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol. Dis. 40, 13–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Lang, P. et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br. J. Haematol. 165, 688–698 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Amrolia, P. J. et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 108, 1797–1808 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bacchetta, R. et al. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front. Immunol. 5, 16 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Devaud, C. et al. Antitumour activity of γδ T cells reactive against cytomegalovirus-infected cells in a mouse xenograft tumour model. Cancer Res. 69, 3971–3978 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Scheper, W. et al. γδ T cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27, 1328–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Fujishima, N. et al. Skewed T cell receptor repertoire of Vδ1(+) γδ T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin. Exp. Immunol. 149, 70–79 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lamb, L. S. Jr et al. Human γδ(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant. 27, 601–606 (2001).

    Article  PubMed  Google Scholar 

  66. Drobyski, W. R., Majewski, D. & Hanson, G. Graft-facilitating doses of ex vivo activated γδ T cells do not cause lethal murine graft-vs.-host disease. Biol. Blood Marrow Transplant. 5, 222–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Drobyski, W. R., Vodanovic-Jankovic, S. & Klein, J. Adoptively transferred γδ T cells indirectly regulate murine graft-versus-host reactivity following donor leucocyte infusion therapy in mice. J. Immunol. 165, 1634–1640 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Schumm, M. et al. Depletion of T-cell receptor αβ and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy 15, 1253–1258 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Bertaina, A. et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood 124, 822–826 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Martelli, M. F. et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 124, 638–644 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Leen, A. M. et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 114, 4283–4292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Melenhorst, J. J. et al. Graft versus leukemia response without graft-versus-host disease elicited by adoptively transferred multivirus-specific T-cells. Mol. Ther. 23, 179–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Ciceri, F. et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 10, 489–500 (2009).

    Article  PubMed  Google Scholar 

  75. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Storek, J., Mohty, M. & Boelens, J. J. Rabbit anti-T cell globulin in allogeneic haematopoietic cell transplantation. Biol. Blood Marrow Transplant. 21, 959–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Pan, L., Delmonte, J. Jr, Jalonen, C. K. & Ferrara, J. L. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86, 4422–4429 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Coghill, J. M. et al. Effector CD4+ T cells, the cytokines they generate, and GVHD: something old and something new. Blood 117, 3268–3276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zeng, D., Dejbakhsh-Jones, S. & Strober, S. Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. Blood 90, 453–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Arpinati, M., Green, C. L., Heimfeld, S., Heuser, J. E. & Anasetti, C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95, 2484–2490 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Mielcarek, M., Graf, L., Johnson, G. & Torok-Storb, B. Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 92, 215–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Mielcarek, M., Martin, P. J. & Torok-Storb, B. Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 89, 1629–1634 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka, J., Mielcarek, M. & Torok-Storb, B. Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 91, 347–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Huang, X. J., Chang, Y. J. & Zhao, X. Y. Maintaining hyporesponsiveness and polarization potential of T cells after in vitro mixture of G-CSF mobilized peripheral blood grafts and G-CSF primed bone marrow grafts in different proportions. Transpl. Immunol. 17, 193–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Volpi, I. et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leucocyte antigen haplotype-mismatched haematopoietic transplants. Blood 97, 2514–2521 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Ji, S. Q. et al. G-CSF-primed haploidentical marrow transplantation without ex vivo T cell depletion: an excellent alternative for high-risk leukemia. Bone Marrow Transplant. 30, 861–866 (2002).

    Article  PubMed  Google Scholar 

  87. Huang, X. J. et al. Haploidentical haematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of haematological malignancies. Bone Marrow Transplant. 38, 291–297 (2006).

    Article  PubMed  Google Scholar 

  88. Liu, D. et al. Haploidentical haematopoietic stem cell transplantation without in vitro T cell depletion for treatment of haematological malignancies in children. Biol. Blood Marrow Transplant. 14, 469–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, K. H. et al. Reduced-intensity conditioning therapy with busulphan, fludarabine, and antithymocyte globulin for HLA-haploidentical haematopoietic cell transplantation in acute leukemia and myelodysplastic syndrome. Blood 118, 2609–2617 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, H. R. et al. Humanized anti-CD25 monoclonal antibody for prophylaxis of graft-vs-host disease (GVHD) in haploidentical bone marrow transplantation without ex vivo T-cell depletion. Exp. Haematol. 31, 1019–1125 (2003).

    Article  CAS  Google Scholar 

  91. Ji, S. Q. et al. Anti-CD25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for haematological malignancies. Bone Marrow Transplant. 36, 349–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Di Bartolomeo, P. et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk haematologic malignancies. Blood 121, 849–857 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Luo, Y. et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood 124, 2735–2743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, Y. et al. Haploidentical- versus identical-sibling transplant for AML in remission: a multi-centre, prospective study. Blood 125, 3956–3962 (2013).

    Article  CAS  Google Scholar 

  95. Wang, Y. et al. Superior graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high-risk acute leukemia: an historic comparison. Biol. Blood Marrow Transplant. 17, 821–830 (2011).

    Article  PubMed  Google Scholar 

  96. Huang, X. J. et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol. Blood Marrow Transplant. 15, 257–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, H. et al. Haploidentical haematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol. Blood Marrow Transplant. 21, 1110–1116 (2015).

    Article  PubMed  Google Scholar 

  98. Mo, X. D. et al. Haploidentical haematopoietic stem cell transplantation in adults with Philadelphia-negative acute lymphoblastic leukemia: no difference in the high- and low-risk groups. Int. J. Cancer 136, 1697–1707 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Sun, Y. Q. et al. Haploidentical haematopoietic SCT may be superior to conventional consolidation/maintenance chemotherapy as post-remission therapy for high-risk adult ALL. Bone Marrow Transplant. 50, 20–25 (2015).

    Article  PubMed  Google Scholar 

  100. Huo, M. R. et al. The effect of HLA disparity on clinical outcome after HLA-haploidentical blood and marrow transplantation. Clin. Transplant. 26, 284–291 (2012).

    Article  PubMed  Google Scholar 

  101. Maguire, H. C. Jr, Maibach, H. I. & Minisce, L. W. Jr. Inhibition of guinea pig anaphylactic sensitization with cyclophosphoramide. J. Invest. Dermatol. 36, 235–236 (1961).

    Article  CAS  PubMed  Google Scholar 

  102. Berenbaum, M. C. & Brown, I. N. Prolongation of homograft survival in mice with single doses of cyclophosphamide. Nature 200, 84 (1963).

    Article  CAS  PubMed  Google Scholar 

  103. Mayumi, H. & Tokunaga, K. Cyclophosphamide-induced chimera-type tolerance to allografts: an overview of drug-induced immunological tolerance. Fukuoka Igaku Zasshi 81, 20–39 (1990).

    CAS  PubMed  Google Scholar 

  104. Mayumi, H., Umesue, M. & Nomoto, K. Cyclophosphamide-induced immunological tolerance: an overview. Immunobiology 195, 129–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Eto, M. et al. Sequential mechanisms of cyclophosphamide-induced skin allograft tolerance including the intrathymic clonal deletion followed by late breakdown of the clonal deletion. J. Immunol. 145, 1303–1310 (1990).

    CAS  PubMed  Google Scholar 

  106. Kong, Y. Y. et al. Regulatory T cells in maintenance and reversal of peripheral tolerance in vivo. J. Immunol. 157, 5284–5289 (1996).

    CAS  PubMed  Google Scholar 

  107. Nomoto, K., Eto, M., Yanaga, K., Nishimura, Y. & Maeda, T. Interference with cyclophosphamide-induced skin allograft tolerance by cyclosporin A. J. Immunol. 149, 2668–2674 (1992).

    CAS  PubMed  Google Scholar 

  108. Dukor, P. & Dietrich, F. M. Prevention of cyclophosphamide-induced tolerance to erythrocytes by pretreatment with cortisone. Proc. Soc. Exp. Biol. Med. 133, 280–285 (1970).

    Article  CAS  PubMed  Google Scholar 

  109. Nishimura, Y. et al. Recombinant human granulocyte colony-stimulating factor improves the compromised state of recipient mice without affecting the induction of specific tolerance in the cyclophosphamide-induced tolerance system. J. Immunol. 146, 2639–2647 (1991).

    CAS  PubMed  Google Scholar 

  110. Mayumi, H. & Good, R. A. Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J. Exp. Med. 169, 213–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  111. Colson, Y. L. et al. A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major, minor, and haematopoietic histocompatibility barriers. J. Immunol. 155, 4179–4188 (1995).

    CAS  PubMed  Google Scholar 

  112. Luznik, L., Engstrom, L. W., Iannone, R. & Fuchs, E. J. Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Biol. Blood Marrow Transplant. 8, 131–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Luznik, L., Jalla, S., Engstrom, L. W., Iannone, R. & Fuchs, E. J. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood 98, 3456–3464 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Colson, Y. L. et al. Durable mixed allogeneic chimerism and tolerance by a nonlethal radiation-based cytoreductive approach. J. Immunol. 157, 2820–2829 (1996).

    CAS  PubMed  Google Scholar 

  115. Ross, D., Jones, M., Komanduri, K. & Levy, R. B. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after haematopoietic cell transplantation. Biol. Blood Marrow Transplant. 19, 1430–1438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ganguly, S. et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood 124, 2131–2141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kanakry, C. G. et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci. Transl. Med. 5, 211ra157 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Emadi, A., Jones, R. J. & Brodsky, R. A. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol. 6, 638–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, B. J., Cui, X., Liu, C. & Chao, N. J. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood 99, 3083–3088 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Guimond, M. et al. P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood 100, 375–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Bastien, J. P. et al. Photodepletion differentially affects CD4+ TREGS versus CD4+ effector T cells from patients with chronic graft-versus-host disease. Blood 116, 4859–4869 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Nirmul, G., Severin, C. & Taub, R. N. Mechanisms and kinetics of cyclophosphamide-induced specific tolerance to skin allografts in mice. Transplant. Proc. 5, 675–678 (1973).

    CAS  PubMed  Google Scholar 

  123. O'Donnell, P. V. et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 8, 377–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Luznik, L. et al. HLA-haploidentical bone marrow transplantation for haematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 14, 641–650 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Luznik, L., O'Donnell, P. V. & Fuchs, E. J. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin. Oncol. 39, 683–693 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Munchel, A. et al. Nonmyeloablative, HLA-haploidentical bone marrow transplantation with high dose, post-transplantation cyclophosphamide. Paediatr. Rep. 3, e15 (2011)

    Article  CAS  Google Scholar 

  127. McCurdy, S. R. et al. Risk-stratified outcomes of nonmyeloablative, HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood 125, 3024–3031 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Raiola, A. M. et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for haematologic malignancies after myeloablative conditioning. Biol. Blood Marrow Transplant. 19, 117–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Solomon, S. R. et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk haematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol. Blood Marrow Transplant. 18, 1859–1866 (2012).

    Article  PubMed  Google Scholar 

  130. Solomon, S. R. et al. Total body irradiation-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Biol. Blood Marrow Transplant. 21, 1299–1307 (2015)

    Article  PubMed  Google Scholar 

  131. Grosso, D. et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood 118, 4732–4739 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Grosso, D. et al. A two-step approach to myeloablative haploidentical transplantation: low nonrelapse mortality and high survival confirmed in patients with earlier stage disease. Biol. Blood Marrow Transplant. 21, 646–652 (2014).

    Article  PubMed  Google Scholar 

  133. Raj, K. et al. Peripheral blood haematopoietic stem cells for transplantation of haematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol. Blood Marrow Transplant. 20, 890–895 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Castagna, L. et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol. Blood Marrow Transplant. 20, 724–729 (2014).

    Article  PubMed  Google Scholar 

  135. Anasetti, C. et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N. Engl. J. Med. 367, 1487–1496 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. O'Donnell, P., Raj, K. & Pagliuca, A. High fever occurring 4 to 5 days post-transplant of haploidentical bone marrow or peripheral blood stem cells after reduced-intensity conditioning associated with the use of post-transplant cyclophosphamide as prophylaxis for graft-versus-host disease. Biol. Blood. Marrow Transplant. 21, 197–198 (2015).

    Article  PubMed  Google Scholar 

  137. Crocchiolo, R. et al. Infections after T-replete haploidentical transplantation and high-dose cyclophosphamide as graft-versus-host disease prophylaxis. Transpl. Infect. Dis. 17, 242–249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gladstone, D. E. et al. Partially mismatched transplantation and human leucocyte antigen donor-specific antibodies. Biol. Blood Marrow Transplant. 19, 647–652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ciurea, S. O. et al. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem-cell transplantation. Transplantation 88, 1019–1024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Leffell, M. S., Jones, R. J. & Gladstone, D. E. Donor HLA-specific Abs: to BMT or not to BMT? Bone Marrow Transplant. 50, 751–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kanakry, J. A. et al. Absence of post-transplantation lymphoproliferative disorder after allogeneic blood or marrow transplantation using post-transplantation cyclophosphamide as graft-versus-host disease prophylaxis. Biol. Blood Marrow Transplant. 19, 1514–1517 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Symons, H. J. et al. Rarity of donor-derived malignancy after allogeneic BMT with high-dose post-transplantation cyclophosphamide. Biol. Blood Marrow Transplant. 20, S252 (2014).

    Article  Google Scholar 

  143. Kanakry, C. G. & Luznik, L. Are alternative donors really still “alternative?” Biol. Blood Marrow Transplant. 20, 1463–1464 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ciurea, S. O. et al. Haploidentical transplant with post-transplant cyclophosphamide versus matched unrelated donor transplant for acute myeloid leukemia. Blood http://dx.doi.org/10.1182/blood-2015-04-639831.

  145. Kanakry, J. A. et al. Outcomes of related donor HLA-identical or HLA-haploidentical allogeneic blood or marrow transplantation for peripheral T cell lymphoma. Biol. Blood Marrow Transplant. 19, 602–606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garciaz, S. et al. Familial haploidentical challenging unrelated donor Allo-SCT in advanced non-Hodgkin lymphomas when matched related donor is not available. Bone Marrow Transplant. 50, 865–867 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Burroughs, L. M. et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related haematopoietic cell transplantation following nonmyeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biol. Blood Marrow Transplant. 14, 1279–1287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Raiola, A. et al. Unmanipulated haploidentical BMT following non-myeloablative conditioning and post-transplantation CY for advanced Hodgkin's lymphoma. Bone Marrow Transplant. 49, 190–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Castagna, L. et al. Nonmyeloablative conditioning, unmanipulated haploidentical SCT and post-infusion CY for advanced lymphomas. Bone Marrow Transplant. 49, 1475–1480 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Ciurea, S. O. et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical haematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 18, 1835–1844 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Brunstein, C. G. et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood 118, 282–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eapen, M. et al. Mismatched related and unrelated donors for allogeneic haematopoietic cell transplantation for adults with haematologic malignancies. Biol. Blood Marrow Transplant. 20, 1485–1492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. El-Cheikh, J. et al. Unrelated cord blood compared with haploidentical grafts in patients with haematological malignancies. Cancer 121, 1809–1816 (2015).

    Article  PubMed  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  155. Luznik, L. et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 115, 3224–3330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kanakry, C. G. et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood 124, 3817–3827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kanakry, C. G. et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulphan and fludarabine conditioning. J. Clin. Oncol. 32, 3497–3505 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  159. Holtick, U. et al. OCTET-CY: a phase II study to investigate the efficacy of post-transplant cyclophosphamide as sole graft-versus-host prophylaxis after allogeneic peripheral blood stem cell transplantation. Eur. J. Haematol. https://dx.http://dx.doi.org/10.1111/ejh.12541.

  160. Bradstock, K. F. et al. Single-Agent high-dose cyclophosphamide for graft-versus-host disease prophylaxis in human leucocyte antigen-matched reduced-intensity peripheral blood stem cell transplantation results in an unacceptably high rate of severe acute graft-versus-host disease. Biol. Blood Marrow Transplant. 21, 941–944 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Alousi, A. M. et al. Phase II trial of graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide after reduced-intensity busulphan/fludarabine conditioning for haematological malignancies. Biol. Blood Marrow Transplant. 21, 906–912 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  163. Solomon, S. R. et al. Calcineurin inhibitor—free graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide and brief-course sirolimus following reduced-intensity peripheral blood stem cell transplantation. Biol. Blood Marrow Transplant. 20, 1828–1834 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Leventhal, J. et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and haematopoietic stem cell transplantation. Sci. Transl. Med. 4, 124ra28 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Leventhal, J. et al. Tolerance induction in HLA disparate living donor kidney transplantation by donor stem cell infusion: durable chimerism predicts outcome. Transplantation 95, 169–176 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Leventhal, J. R. et al. Immune reconstitution/immunocompetence in recipients of kidney plus haematopoietic stem/facilitating cell transplants. Transplantation 99, 288–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Vago, L. et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl. J. Med. 361, 478–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Jagasia, M. H. et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol. Blood Marrow Transplant. 21, 389–401.e1 (2015).

    Article  PubMed  Google Scholar 

  169. Bhatia, S. et al. Late mortality after allogeneic haematopoietic cell transplantation and functional status of long-term survivors: report from the bone marrow transplant survivor study. Blood 110, 3784–3792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for this manuscript, discussions of content, writing of this manuscript and reviewing/editing prior to submission.

Corresponding authors

Correspondence to Ephraim J. Fuchs or Leo Luznik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanakry, C., Fuchs, E. & Luznik, L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol 13, 10–24 (2016). https://doi.org/10.1038/nrclinonc.2015.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.128

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer