Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systemic treatment of soft-tissue sarcoma—gold standard and novel therapies

Key Points

  • Soft-tissue sarcoma (STS) is a rare disease that encompasses over 50 separate histological subtypes with varying sensitivity to systemic treatment

  • Chemotherapy has been based on historical experience but there is now increasing evidence for treatment with chemotherapy in large phase II and III trials

  • While ifosfamide and doxorubicin remain important treatment options in STS, therapy is increasingly tailored towards different histological subtypes

  • Clinical trials remain a challenge due to the rarity and heterogeneity of STS and international collaboration is critical to achieve high quality clinical trials stratified by histological subtype

  • Targeted therapies such as tyrosine kinase inhibitors and immunotherapy will become increasingly important as we further define the molecular basis of sarcomagenesis

Abstract

Soft-tissue sarcoma (STS) is a rare and heterogeneous group of tumours that comprise approximately 1% of all adult cancers, and encompass over 50 different subtypes. These tumours exhibit a wide range of differing behaviours and underlying molecular pathologies, and can arise anywhere in the body. Surgical resection is critical to the management of locoregional disease. In the locally advanced or metastatic disease settings, systemic therapy has an important role in the multidisciplinary management of sarcoma. Cytotoxic therapy that usually consists of doxorubicin and ifosfamide has been the mainstay of treatment for many years. However recent advances in molecular pathogenesis, the development of novel targeted therapies, changes in clinical trial design and increased international collaboration have led to the development of histology-driven therapy. Furthermore, genomic profiling has highlighted that some STS are driven by translocation, mutation or amplification and others have more complex and chaotic karyotypes. In this Review, we aim to describe the current gold standard treatment for specific STS subtypes as well as outline future promising therapies in the pipeline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gold standard treatment paradigms for advanced STS.
Figure 2: Kinase interaction maps for kinase inhibitors in sarcoma.
Figure 3: Immunotherapy in sarcoma.

Similar content being viewed by others

References

  1. Clark, M. A., Fisher, C., Judson, I. & Thomas, J. M. Soft-tissue sarcomas in adults. N. Engl. J. Med. 353, 701–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Fletcher, C. D. M., Unni, K. K., Mertens, F. (Eds) WHO classification of tumours of soft tissue and bone (IARC Press, Lyon, 2013).

    Google Scholar 

  3. National Cancer Intelligence Newtork. Bone and soft tissue sarcomas UK incidence and survival: 1996 to 2010 [online], (2013).

  4. Jemal, A., Center, M. M., Ward, E. & Thun, M. J. Cancer occurrence. Methods Mol. Biol. 471, 3–29 (2009).

    Article  PubMed  Google Scholar 

  5. Rossi, C. R. et al. Adherence to treatment guidelines for primary sarcomas affects patient survival: a side study of the European CONnective TIssue CAncer NETwork (CONTICANET). Ann. Oncol. 24, 1685–1691 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Santoro, A. et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J. Clin. Oncol. 13, 1537–1545 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Judson, I. et al. Results of a randomised phase III trial (EORTC 62012) of single agent doxorubicin versus doxorubicin plus ifosfamide as first line chemotherapy for patients with advanced or metastatic soft tissue sarcoma: a survival study by the EORTC soft tissue and bone sarcoma group [abstract]. Ann. Oncol. 23 (Suppl. 9), ixe28 LBA7 (2012).

    Google Scholar 

  8. Aurias, A., Rimbaut, C., Buffe, D., Zucker, J. M. & Mazabraud, A. Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet. Cytogenet. 12, 21–25 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. de Alava, E. et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J. Clin. Oncol. 16, 1248–1255 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Fisher, C. The diversity of soft tissue tumours with EWSR1 gene rearrangements: a review. Histopathology 64, 134–150 (2014).

    Article  PubMed  Google Scholar 

  11. Thway, K. & Fisher, C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am. J. Surg. Pathol. 36, e1–e11 (2012).

    Article  PubMed  Google Scholar 

  12. Coindre, J. M. Molecular biology of soft-tissue sarcomas [French]. Bull. Cancer 97, 1337–1345 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Pervaiz, N. et al. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer 113, 573–581 (2008).

    Article  PubMed  Google Scholar 

  14. Le Cesne, A., Van Glabbeke, M. & Woll, P. J. The end of adjuvant chemotherapy era with doxorubicin-based regimen in resected high-grade soft tissue sarcoma: Pooled analysis of the two STBSG-EORTC phase III clinical trials [abstract]. J. Clin. Oncol. 26 (Suppl.), a10525 (2008).

    Article  Google Scholar 

  15. Woll, P. J. et al. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet Oncol. 13, 1045–1054 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Look Hong, N. J. et al. Neoadjuvant chemoradiotherapy for patients with high-risk extremity and truncal sarcomas: a 10-year single institution retrospective study. Eur. J. Cancer 49, 875–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Greto, D. et al. Neoadjuvant treatment of soft tissue sarcoma. Radiol. Med. http://dx.doi.org/10.1007/s11547-013-0331-6.

  18. Sleijfer, S. et al. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG). Eur. J. Cancer 46, 72–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Bramwell, V. H., Anderson, D. & Charette, M. L. Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft-tissue sarcoma: a meta-analysis and clinical practice guideline. Sarcoma 4, 103–112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Volkova, M. & Russell, R. 3rd. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 7, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tascilar, M., Loos, W. J., Seynaeve, C., Verweij, J. & Sleijfer, S. The pharmacologic basis of ifosfamide use in adult patients with advanced soft tissue sarcomas. Oncologist 12, 1351–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Patel, S. R. et al. High-dose ifosfamide in bone and soft tissue sarcomas: results of phase II and pilot studies--dose-response and schedule dependence. J. Clin. Oncol. 15, 2378–2384 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bui-Nguyen, B. et al. High-dose chemotherapy consolidation for chemosensitive advanced soft tissue sarcoma patients: an open-label, randomized controlled trial. Ann. Oncol. 23, 777–784 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Jones, B., Komarnitsky, P., Miller, G. T., Amedio, J. & Wallner, B. P. Anticancer activity of stabilized palifosfamide in vivo: schedule effects, oral bioavailability, and enhanced activity with docetaxel and doxorubicin. Anticancer Drugs 23, 173–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Verschraegen, C. F. et al. A phase II, randomized, controlled trial of palifosfamide plus doxorubicin versus doxorubicin in patients with soft tissue sarcoma (PICASSO) [abstract]. J. Clin. Oncol. 28 (Suppl.), a10004 (2010).

    Article  Google Scholar 

  26. Hoffmann, C. et al. What is the price of cure for the treatment of pelvic Ewing sarcoma? [abstract 3820] presented at the ECCO17–ESMO38–ESTRO32 meeting (Amsterdam, 2013).

  27. Demetri, G. D. et al. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J. Clin. Oncol. 31, 2485–2492 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Mansi, J. L. et al. A phase I–II study of ifosfamide in combination with adriamycin in the treatment of adult soft tissue sarcoma. Eur. J. Cancer Clin. Oncol. 24, 1439–1443 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Ganjoo, K. N. et al. A randomised phase III multicenter open label study comparing TH3-2 in combination with doxorubicin versus doxorubicin alone in subjects with locally advanced unresectable or metastatic soft tissue sarcoma [abstract]. Presented at the CTOS meeting (Prague, 2012).

  30. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  31. Sharma, S., Takyar, S., Manson, S. C., Powell, S. & Penel, N. Efficacy and safety of pharmacological interventions in second- or later-line treatment of patients with advanced soft tissue sarcoma: a systematic review. BMC Cancer 13, 385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maki, R. G. et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J. Clin. Oncol. 25, 2755–2763 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hensley, M. L. et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J. Clin. Oncol. 20, 2824–2831 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Pautier, P. et al. Randomized multicenter and stratified phase II study of gemcitabine alone versus gemcitabine and docetaxel in patients with metastatic or relapsed leiomyosarcomas: a Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) French Sarcoma Group Study (TAXOGEM study). Oncologist 17, 1213–1220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. UK Clinical Research Network Study Portfolio. Public.ukcrn.org.uk [online], (2014).

  36. Dileo, P. et al. Gemcitabine and vinorelbine combination chemotherapy for patients with advanced soft tissue sarcomas: results of a phase II trial. Cancer 109, 1863–1869 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Del-Muro, X. et al. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: a Spanish Group for Research on Sarcomas study. J. Clin. Oncol. 29, 2528–2533 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Le Cesne, A. et al. Phase II study of ET-743 in advanced soft tissue sarcomas: a European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J. Clin. Oncol. 23, 576–584 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Pommier, Y. et al. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. Biochemistry 35, 13303–13309 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Di Giandomenico, S. et al. Mode of action of trabectedin in myxoid liposarcomas. Oncogene http://dx.doi.org/10.1038/onc.2013.462 (2013).

  41. Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Sleijfer, S. et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J. Clin. Oncol. 27, 3126–3132 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. van der Graaf, W. T. et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379, 1879–1886 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Mir, O. et al. Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperable or metastatic soft tissue sarcoma. Eur. J. Cancer 47, 515–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Judson, I. et al. Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer 37, 870–877 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Grosso, F. et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 8, 595–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Forni, C. et al. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol. Cancer Ther. 8, 449–457 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Demetri, G. D. et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J. Clin. Oncol. 27, 4188–4196 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Le Cesne, A. et al. A retrospective analysis of antitumour activity with trabectedin in translocation-related sarcomas. Eur. J. Cancer 48, 3036–3044 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Hendifar, A. E. et al. Results of the randomized phase III trial of trabectedin (T) versus doxorubicin-based chemotherapy (DXCT) as first-line therapy in patients (pts) with translocation-related sarcoma (TRS) [abstract]. J. Clin. Oncol. 31 (Suppl.), a10517 (2013).

    Google Scholar 

  51. Spurrell, E. L., Fisher, C., Thomas, J. M. & Judson, I. R. Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann. Oncol. 16, 437–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rosen, G. et al. Synovial sarcoma. Uniform response of metastases to high dose ifosfamide. Cancer 73, 2506–2511 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Orbach, D. et al. Paediatric and adolescent alveolar soft part sarcoma: a joint series from European cooperative groups. Pediatr. Blood Cancer 60, 1826–1832 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Portera, C. A. Jr et al. Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer 91, 585–591 (2001).

    Article  PubMed  Google Scholar 

  55. Kummar, S. et al. Cediranib for metastatic alveolar soft part sarcoma. J. Clin. Oncol. 31, 2296–2302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stacchiotti, S. et al. Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Ann. Oncol. 22, 1682–1690 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  58. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  59. Davis, I. J. et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell 9, 473–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Wagner, A. J. et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 118, 5894–5902 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Kurzrock, R. et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol. 29, 2660–2666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shimizu, A. et al. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 59, 3719–3723 (1999).

    CAS  PubMed  Google Scholar 

  63. Rutkowski, P. et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J. Clin. Oncol. 28, 1772–1779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  65. Hendrickson, M. R. et al. in Pathology and Genetics of Tumours of the Breast and Female Genital Organs (eds Tavassoli, F. A. & Devilee, P.) (IARC Press, Lyon, 2003).

    Google Scholar 

  66. Cheng, X. et al. Recurrence patterns and prognosis of endometrial stromal sarcoma and the potential of tyrosine kinase-inhibiting therapy. Gynecol. Oncol. 121, 323–327 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Malouf, G. G. et al. Impact of adjuvant treatment modalities on the management of patients with stages I–II endometrial stromal sarcoma. Ann. Oncol. 21, 2102–2106 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Pink, D. et al. Harm or benefit of hormonal treatment in metastatic low-grade endometrial stromal sarcoma: single center experience with 10 cases and review of the literature. Gynecol. Oncol. 101, 464–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Dahhan, T., Fons, G., Buist, M. R., Ten Kate, F. J. & van der Velden, J. The efficacy of hormonal treatment for residual or recurrent low-grade endometrial stromal sarcoma. A retrospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 144, 80–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. ISRCTN. Current Controlled Trials [online], (2014).

  71. Chiang, S. & Oliva, E. Recent developments in uterine mesenchymal neoplasms. Histopathology 62, 124–137 (2013).

    Article  PubMed  Google Scholar 

  72. Schick, U. et al. Outcome and prognostic factors in endometrial stromal tumors: a Rare Cancer Network study. Int. J. Radiat. Oncol. Biol. Phys. 82, e757–e763 (2012).

    Article  PubMed  Google Scholar 

  73. Tanner, E. J., Garg, K., Leitao, M. M. Jr, Soslow, R. A. & Hensley, M. L. High grade undifferentiated uterine sarcoma: surgery, treatment, and survival outcomes. Gynecol. Oncol. 127, 27–31 (2012).

    Article  PubMed  Google Scholar 

  74. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  75. Cassier, P. A. et al. A prospective epidemiological study of new incident GISTs during two consecutive years in Rhone Alpes region: incidence and molecular distribution of GIST in a European region. Br. J. Cancer 103, 165–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blanke, C. D. et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol. 26, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Linch, M., Claus, J. & Benson, C. Update on imatinib for gastrointestinal stromal tumors: duration of treatment. Onco Targets Ther. 6, 1011–1023 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Corless, C. L., Barnett, C. M. & Heinrich, M. C. Gastrointestinal stromal tumours: origin and molecular oncology. Nat. Rev. Cancer 11, 865–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Wagner, A. J. et al. Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. J. Clin. Oncol. 28, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kenerson, H., Folpe, A. L., Takayama, T. K. & Yeung, R. S. Activation of the mTOR pathway in sporadic angiomyolipomas and other perivascular epithelioid cell neoplasms. Hum. Pathol. 38, 1361–1371 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kozlowski, P. et al. Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-phenotype correlations. Hum. Genet. 121, 389–400 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Bissler, J. J. et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381, 817–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Italiano, A. et al. Treatment with the mTOR inhibitor temsirolimus in patients with malignant PEComa. Ann. Oncol. 21, 1135–1137 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Nilbert, M., Rydholm, A., Mitelman, F., Meltzer, P. S. & Mandahl, N. Characterization of the 12q13–15 amplicon in soft tissue tumors. Cancer Genet. Cytogenet. 83, 32–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Shimada, S. et al. The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum. Pathol. 37, 1123–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Thway, K., Flora, R., Shah, C., Olmos, D. & Fisher, C. Diagnostic utility of p16, CDK4, and MDM2 as an immunohistochemical panel in distinguishing well-differentiated and dedifferentiated liposarcomas from other adipocytic tumors. Am. J. Surg. Pathol. 36, 462–469 (2012).

    Article  PubMed  Google Scholar 

  87. Jones, R. L., Fisher, C., Al-Muderis, O. & Judson, I. R. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur. J. Cancer 41, 2853–2860 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Martin-Liberal, J. et al. Clinical activity and tolerability of a 14-day infusional ifosfamide schedule in soft-tissue sarcoma. Sarcoma http://dx.doi.org/10.1155/2013/868973 (2013).

  89. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  90. Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15882–15889 (1991).

    CAS  PubMed  Google Scholar 

  91. Schoffski, P. et al. Activity of eribulin mesylate in patients with soft-tissue sarcoma: a phase 2 study in four independent histological subtypes. Lancet Oncol. 12, 1045–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  93. Italiano, A. et al. Clinical outcome of leiomyosarcomas of vascular origin: comparison with leiomyosarcomas of other origin. Ann. Oncol. 21, 1915–1921 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Farid, M. et al. The influence of primary site on outcomes in leiomyosarcoma: a review of clinicopathologic differences between uterine and extrauterine disease. Am. J. Clin. Oncol. 36, 368–374 (2013).

    Article  PubMed  Google Scholar 

  95. Leitao, M. M. et al. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer 101, 1455–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. O'Cearbhaill, R. et al. Treatment of advanced uterine leiomyosarcoma with aromatase inhibitors. Gynecol. Oncol. 116, 424–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Casper, E. S. et al. Phase II trial of paclitaxel in patients with soft-tissue sarcoma. Cancer Invest. 16, 442–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Penel, N. et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. J. Clin. Oncol. 26, 5269–5274 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Errani, C. et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 50, 644–653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trombetta, D. et al. Translocation t(7;19)(q22;q13)—a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet. 204, 211–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Belotti, D. et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res. 2, 1843–1849 (1996).

    CAS  PubMed  Google Scholar 

  102. Italiano, A. et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer 118, 3330–3336 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Antonescu, C. R. et al. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 69, 7175–7179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cranshaw, I. M. et al. Clinical outcomes of extra-thoracic solitary fibrous tumours. Eur. J. Surg. Oncol. 35, 994–998 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Constantinidou, A. et al. Conventional anthracycline-based chemotherapy has limited efficacy in solitary fibrous tumour. Acta Oncol. 51, 550–554 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Levard, A. et al. Outcome of patients with advanced solitary fibrous tumors: the Centre Leon Berard experience. BMC Cancer 13, 109 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stacchiotti, S. et al. Response to chemotherapy of solitary fibrous tumour: a retrospective study. Eur. J. Cancer 49, 2376–2383 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Wignall, O. J., Moskovic, E. C., Thway, K. & Thomas, J. M. Solitary fibrous tumors of the soft tissues: review of the imaging and clinical features with histopathologic correlation. AJR Am. J. Roentgenol. 195, W55–W62 (2010).

    Article  PubMed  Google Scholar 

  109. Sawada, N. et al. Immunohistochemical localization of endothelial cell markers in solitary fibrous tumor. Pathol. Int. 52, 769–776 (2002).

    Article  PubMed  Google Scholar 

  110. Stacchiotti, S. et al. Sunitinib malate in solitary fibrous tumor (SFT). Ann. Oncol. 23, 3171–3179 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Pearce, L. R., Komander, D. & Alessi, D. R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11, 9–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Anastassiadis, T., Deacon, S. W., Devarajan, K., Ma, H. & Peterson, J. R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1039–1045 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Monks, A. et al. Sarcoma cell line sensitivity towards approved oncology drugs and investigational agents identifies distinct patterns of response which can be interrogated with associated gene expression [abstract]. Mol. Cancer Ther. 12 (Suppl. 11), aC103 (2013).

    Google Scholar 

  115. Michels, S. et al. SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res. 73, 2518–2528 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Trusolino, L., Bertotti, A. & Comoglio, P. M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 11, 834–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Ferracini, R. et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10, 739–749 (1995).

    CAS  PubMed  Google Scholar 

  118. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mossé, Y. P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov[online] (2014).

  121. Fleuren, E. D. et al. Expression and clinical relevance of MET and ALK in Ewing sarcomas. Int. J. Cancer 133, 427–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Demicco, E. G. et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod. Pathol. 25, 212–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E. & Sherr, C. J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7, 331–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nat. Rev. Mol. Cell Biol. 8, 149–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Dickson, M. A. et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J. Clin. Oncol. 31, 2024–2028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Luke, J. J. et al. The cyclin-dependent kinase inhibitor flavopiridol potentiates doxorubicin efficacy in advanced sarcomas: preclinical investigations and results of a phase I dose-escalation clinical trial. Clin. Cancer Res. 18, 2638–2647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Okuno, S. et al. A phase 2 study of temsirolimus (CCI-779) in patients with soft tissue sarcomas: a study of the Mayo phase 2 consortium (P2C). Cancer 117, 3468–3475 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Quek, R. et al. Combination mTOR and IGF-1R inhibition: phase I trial of everolimus and figitumumab in patients with advanced sarcomas and other solid tumors. Clin. Cancer Res. 17, 871–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Schwartz, G. K. et al. Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol. 14, 371–382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Endo, M. et al. Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin. Cancer Res. 19, 450–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Cohen, E. E. et al. Phase I studies of sirolimus alone or in combination with pharmacokinetic modulators in advanced cancer patients. Clin. Cancer Res. 18, 4785–4793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stacchiotti, S. et al. Sirolimus in advanced hemangioendothelioma [abstract]. J. Clin. Oncol. 31 (Suppl.), a10565 (2013).

    Google Scholar 

  134. Evans, D. G. et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39, 311–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Downward, J. Targeting RAS and PI3K in lung cancer. Nat. Med. 14, 1315–1316 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Jessen, W. J. et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J. Clin. Invest. 123, 340–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Su, L. et al. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 21, 333–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  139. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  140. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  141. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Manfredi, J. J. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 24, 1580–1589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ray-Coquard, I. et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 13, 1133–1140 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  145. Brenner, J. C. et al. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. Cancer Res. 72, 1608–1613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  147. Rosen, E. D. & Spiegelman, B. M. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 276, 37731–37734 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Demetri, G. D. et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA 96, 3951–3956 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Debrock, G. et al. A phase II trial with rosiglitazone in liposarcoma patients. Br. J. Cancer 89, 1409–1412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pishvaian, M. J. et al. A phase 1 study of efatutazone, an oral peroxisome proliferator-activated receptor gamma agonist, administered to patients with advanced malignancies. Cancer 118, 5403–5413 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Maki, R. G. Future directions for immunotherapeutic intervention against sarcomas. Curr. Opin. Oncol. 18, 363–368 (2006).

    Article  PubMed  Google Scholar 

  152. Borden, E. C. et al. Phase II trials of interferons-alpha and -beta in advanced sarcomas. J. Interferon Res. 12, 455–458 (1992).

    Article  CAS  PubMed  Google Scholar 

  153. Schuster, S. J. et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J. Clin. Oncol. 29, 2787–2794 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ayyoub, M. et al. Identification of an SSX-2 epitope presented by dendritic cells to circulating autologous CD4+ T cells. J. Immunol. 172, 7206–7211 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Kawaguchi, S. et al. SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci. 103, 1625–1630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pollack, S. M., Loggers, E. T., Rodler, E. T., Yee, C. & Jones, R. L. Immune-based therapies for sarcoma. Sarcoma 2011, 438940 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hemminger, J. A. et al. The cancer-testis antigen NY-ESO-1 is highly expressed in myxoid and round cell subset of liposarcomas. Mod. Pathol. 26, 282–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Maki, R. G. et al. A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma. Sarcoma 2013, 168145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  164. Ribas, A., Hodi, F. S., Callahan, M., Konto, C. & Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368, 1365–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Smith, T. J. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol. Rev. 62, 199–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cohen, B. D. et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin. Cancer Res. 11, 2063–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Olmos, D. et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 11, 129–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Olmos, D. et al. Targeting the insulin-like growth factor 1 receptor in Ewing's sarcoma: reality and expectations. Sarcoma 2011, 402508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Juergens, H. et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J. Clin. Oncol. 29, 4534–4540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jassem, J. et al. Randomized, open label, phase III trial of figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin in patients with non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a7500 (2010).

    Article  Google Scholar 

  171. Sanfilippo, R. et al. Trabectedin in advanced uterine leiomyosarcomas: a retrospective case series analysis from two reference centers. Gynecol. Oncol. 123, 553–556 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Monk, B. J. et al. A phase II evaluation of trabectedin in the treatment of advanced, persistent, or recurrent uterine leiomyosarcoma: a gynecologic oncology group study. Gynecol. Oncol. 124, 48–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Talbot, S. M. et al. A phase II trial of temozolomide in patients with unresectable or metastatic soft tissue sarcoma. Cancer 98, 1942–1946 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Hensley, M. L. et al. Sunitinib malate in the treatment of recurrent or persistent uterine leiomyosarcoma: a Gynecologic Oncology Group phase II study. Gynecol. Oncol. 115, 460–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kassam, A. & Mandel, K. Metastatic hepatic epithelioid hemangioendothelioma in a teenage girl. J. Pediatr. Hematol. Oncol. 30, 550–552 (2008).

    Article  PubMed  Google Scholar 

  176. Salech, F. et al. Thalidomide for the treatment of metastatic hepatic epithelioid hemangioendothelioma: a case report with a long term follow-up. Ann. Hepatol. 10, 99–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Raphael, C., Hudson, E., Williams, L., Lester, J. F. & Savage, P. M. Successful treatment of metastatic hepatic epithelioid hemangioendothelioma with thalidomide: a case report. J. Med. Case Rep. 4, 413 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Mascarenhas, R. C. et al. Thalidomide inhibits the growth and progression of hepatic epithelioid hemangioendothelioma. Oncology 67, 471–475 (2004).

    Article  PubMed  Google Scholar 

  179. Sumrall, A., Fredericks, R., Berthold, A. & Shumaker, G. Lenalidomide stops progression of multifocal epithelioid hemangioendothelioma including intracranial disease. J. Neurooncol. 97, 275–277 (2010).

    Article  PubMed  Google Scholar 

  180. Chevreau, C. et al. Sorafenib in patients with progressive epithelioid hemangioendothelioma: a phase 2 study by the French Sarcoma Group (GSF/GETO). Cancer 119, 2639–2644 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Gaur, S., Torabi, A. & O'Neill, T. J. Activity of angiogenesis inhibitors in metastatic epithelioid hemangioendothelioma: a case report. Cancer Biol. Med. 9, 133–136 (2012).

    PubMed  PubMed Central  Google Scholar 

  182. Trautmann, K., Bethke, A., Ehninger, G. & Folprecht, G. Bevacizumab for recurrent hemangioendothelioma. Acta Oncol. 50, 153–154 (2011).

    Article  PubMed  Google Scholar 

  183. Schlemmer, M. et al. Paclitaxel in patients with advanced angiosarcomas of soft tissue: a retrospective study of the EORTC soft tissue and bone sarcoma group. Eur. J. Cancer 44, 2433–2436 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Nagano, T. et al. Docetaxel: a therapeutic option in the treatment of cutaneous angiosarcoma: report of 9 patients. Cancer 110, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Skubitz, K. M. & Haddad, P. A. Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma. Cancer 104, 361–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Stacchiotti, S. et al. Gemcitabine in advanced angiosarcoma: a retrospective case series analysis from the Italian Rare Cancer Network. Ann. Oncol. 23, 501–508 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Maki, R. G. et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J. Clin. Oncol. 27, 3133–3140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chugh, R. et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J. Clin. Oncol. 27, 3148–3153 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Agulnik, M. et al. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann. Oncol. 24, 257–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Yoo, C. et al. Multicenter phase II study of everolimus in patients with metastatic or recurrent bone and soft-tissue sarcomas after failure of anthracycline and ifosfamide. Invest. New Drugs 31, 1602–1608 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Royal Marsden Hospital/Institute of Cancer Research Biomedical Research Centre for supporting this work and to the members of the Sarcoma Unit, Royal Marsden Hospital for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.L., K.T. and C.B. researched data for the article and wrote the article. M.L., I.R.J. and C.B. made a substantial contribution to the discussion of the article content. M.L., A.B.M., I.R.J. and C.B. reviewed and edited the manuscript before submission and all authors revised the article after peer review.

Corresponding author

Correspondence to Charlotte Benson.

Ethics declarations

Competing interests

M.L., A.B.M., I.R.J. & C.B. have all received research support from Bayer, GlaxoSmithKline, Eisai, Novartis, AstraZeneca and Ziopharm Oncology. K.T. Declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linch, M., Miah, A., Thway, K. et al. Systemic treatment of soft-tissue sarcoma—gold standard and novel therapies. Nat Rev Clin Oncol 11, 187–202 (2014). https://doi.org/10.1038/nrclinonc.2014.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.26

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer