Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

How does genome sequencing impact surgery?

Abstract

Cancer is a leading cause of death worldwide. Great efforts are dedicated to the development of prognostic and predictive biomarkers to improve diagnosis and achieve optimal treatment selection, thereby, introducing precision medicine in the multimodality treatment of cancer. Genomic aberrations are the basis of tumour development, representing excellent candidates for the development of promising clinical biomarkers. Over the past decade, single-gene mutations and genomic profiling have been increasingly used in multidisciplinary consultations for risk-assessment and treatment planning for patients with cancer. We discuss the impact of such genetic-based information on surgical decision-making. Single-gene mutations have already influenced surgical decision-making in breast, colorectal and thyroid cancer. However, the direct impact of genomic profiling on surgical care has not yet been fully established. We discuss the direct and indirect influences of genomic profiling on surgery, and analyse the limitations and unresolved issues of a genotypic-approach to the surgical management of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of genomic profiling on surgery.
Figure 2: Global overview of the effect of genomic profiling on precision medicine.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  2. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Armaghany, T., Wilson, J. D., Chu, Q. & Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 5, 19–27 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Giardiello, F. M. et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328, 1313–1316 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Labayle, D. et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101, 635–639 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Ladenheim, J. et al. Effect of sulindac on sporadic colonic polyps. Gastroenterology 108, 1083–1087 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Balmana, J., Diez, O., Rubio, I. & Castiglione, M. BRCA in breast cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 21 (Suppl. 5), v20–v22 (2010).

    Article  PubMed  Google Scholar 

  10. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Gray, R. G. et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J. Clin. Oncol. 29, 4611–4619 (2011).

    Article  PubMed  Google Scholar 

  12. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bride, M. B. et al. Factors associated with surgical decision making in women with early-stage breast cancer: a literature review. J. Womens Health (Larchmt) 22, 236–242 (2013).

    Article  Google Scholar 

  15. Jatoi, I. Options in breast cancer local therapy: who gets what? World J. Surg. 36, 1498–1502 (2012).

    Article  PubMed  Google Scholar 

  16. Parry, S. et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut 60, 950–957 (2011).

    Article  PubMed  Google Scholar 

  17. Romei, C., Pardi, E., Cetani, F. & Elisei, R. Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J. Oncol. 2012, 705036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duncan, J. A., Reeves, J. R. & Cooke, T. G. BRCA1 and BRCA2 proteins: roles in health and disease. Mol. Pathol. 51, 237–247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lord, C. J. & Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 19, 1381–1388 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Metcalfe, K. et al. Predictors of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 104, 1384–1392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Robson, M. et al. Appropriateness of breast-conserving treatment of breast carcinoma in women with germline mutations in BRCA1 or BRCA2: a clinic-based series. Cancer 103, 44–51 (2005).

    Article  PubMed  Google Scholar 

  23. Neuburger, J., Macneill, F., Jeevan, R., van der Meulen, J. H. & Cromwell, D. A. Trends in the use of bilateral mastectomy in England from 2002 to 2011: retrospective analysis of hospital episode statistics. BMJ Open 3, (2013).

  24. Rebbeck, T. R. et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J. Clin. Oncol. 22, 1055–1062 (2004).

    Article  PubMed  Google Scholar 

  25. Metcalfe, K. A. et al. International variation in rates of uptake of preventive options in BRCA1 and BRCA2 mutation carriers. Int. J. Cancer 122, 2017–2022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finch, A. et al. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation. JAMA 296, 185–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Hermsen, B. B. et al. No efficacy of annual gynaecological screening in BRCA1/2 mutation carriers; an observational follow-up study. Br. J. Cancer 96, 1335–1342 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saha, D., Roman, C. & Beauchamp, R. D. New strategies for colorectal cancer prevention and treatment. World J. Surg. 26, 762–766 (2002).

    Article  PubMed  Google Scholar 

  29. Warrier, S. K. & Kalady, M. F. Familial adenomatous polyposis: challenges and pitfalls of surgical treatment. Clin. Colon Rectal. Surg. 25, 83–89 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwarzova, L. et al. Novel mutations of the APC gene and genetic consequences of splicing mutations in the Czech FAP families. Fam. Cancer 12, 35–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Church, J., Burke, C., McGannon, E., Pastean, O. & Clark, B. Predicting polyposis severity by proctoscopy: how reliable is it? Dis. Colon Rectum 44, 1249–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bulow, S. et al. Colectomy and ileorectal anastomosis is still an option for selected patients with familial adenomatous polyposis. Dis. Colon Rectum 51, 1318–1323 (2008).

    Article  PubMed  Google Scholar 

  33. Gunther, K., Braunrieder, G., Bittorf, B. R., Hohenberger, W. & Matzel, K. E. Patients with familial adenomatous polyposis experience better bowel function and quality of life after ileorectal anastomosis than after ileoanal pouch. Colorectal Dis. 5, 38–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Olsen, K. O. et al. Female fecundity before and after operation for familial adenomatous polyposis. Br. J. Surg. 90, 227–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Slors, F. J., van Zuijlen, P. P. & van Dijk, G. J. Sexual and bladder dysfunction after total mesorectal excision for benign diseases. Scand. J. Gastroenterol. Suppl. 232, 48–51 (2000).

    Google Scholar 

  36. Markowitz, S. D. & Bertagnolli, M. M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 361, 2449–2460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin-Lopez, J. V. & Fishel, R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam. Cancer 12, 159–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohlmann, W. & Gruber, S. B. Lynch Syndrome in Gene Reviews (eds Pagon, R. A. et al.) 1–2 (University of Washington, Seattle, 2004).

    Google Scholar 

  39. Engel, C. et al. Risks of less common cancers in proven mutation carriers with Lynch syndrome. J. Clin. Oncol. 30, 4409–4415 (2012).

    Article  PubMed  Google Scholar 

  40. Kloos, R. T. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19, 565–612 (2009).

    Article  PubMed  Google Scholar 

  41. Kurzrock, R. et al. Tumor marker and measurement fluctuations may not reflect treatment efficacy in patients with medullary thyroid carcinoma on long-term RET inhibitor therapy. Ann. Oncol. 24, 2256–2261 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Rivkees, S. A. et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr. Rev. 32, 798–826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elisei, R. et al. The timing of total thyroidectomy in RET gene mutation carriers could be personalized and safely planned on the basis of serum calcitonin: 18 years experience at one single center. J. Clin. Endocrinol. Metab. 97, 426–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Xing, M., Haugen, B. R. & Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet 381, 1058–1069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Dowsett, M. et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J. Clin. Oncol. 28, 1829–1834 (2010).

    Article  PubMed  Google Scholar 

  49. Mamounas, E. P. et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J. Clin. Oncol. 28, 1677–1683 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Arpino, G. et al. Gene expression profiling in breast cancer: a clinical perspective. Breast 22, 109–120 (2013).

    Article  PubMed  Google Scholar 

  53. Cardoso, F. et al. Clinical application of the 70-gene profile: the MINDACT trial. J. Clin. Oncol. 26, 729–735 (2008).

    Article  PubMed  Google Scholar 

  54. O'Connell, M. J. et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J. Clin. Oncol. 28, 3937–3944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salazar, R. et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 29, 17–24 (2011).

    Article  PubMed  Google Scholar 

  56. Maak, M. et al. Independent validation of a prognostic genomic signature (ColoPrint) for patients with stage II colon cancer. Ann. Surg. 257, 1053–1058 (2013).

    Article  PubMed  Google Scholar 

  57. Ayers, M. et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J. Clin. Oncol. 22, 2284–2293 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Chang, J. C. et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362, 362–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Cho, J. H. et al. Oncologic safety of breast-conserving surgery compared to mastectomy in patients receiving neoadjuvant chemotherapy for locally advanced breast cancer. J. Surg. Oncol. 108, 531–536 (2013).

    Article  PubMed  Google Scholar 

  60. Shin, H. C. et al. Breast-conserving surgery after tumor downstaging by neoadjuvant chemotherapy is oncologically safe for stage III breast cancer patients. Ann. Surg. Oncol. 20, 2582–2589 (2013).

    Article  PubMed  Google Scholar 

  61. Rose, J. B. et al. Extended neoadjuvant chemotherapy for borderline resectable pancreatic cancer demonstrates promising postoperative outcomes and survival. Ann. Surg. Oncol. 21, 1530–1537 (2014).

    Article  PubMed  Google Scholar 

  62. Hannemann, J. et al. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 23, 3331–3342 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hartley, A., Ho, K. F., McConkey, C. & Geh, J. I. Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phase II/III trials. Br. J. Radiol. 78, 934–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Habr-Gama, A. et al. Low rectal cancer: impact of radiation and chemotherapy on surgical treatment. Dis. Colon Rectum 41, 1087–1096 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Habr-Gama, A. et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann. Surg. 240, 711–717 (2004).

    PubMed  PubMed Central  Google Scholar 

  66. Habr-Gama, A. et al. Long-term results of preoperative chemoradiation for distal rectal cancer correlation between final stage and survival. J. Gastrointest. Surg. 9, 90–99 (2005).

    Article  PubMed  Google Scholar 

  67. Habr-Gama, A. et al. Patterns of failure and survival for nonoperative treatment of stage c0 distal rectal cancer following neoadjuvant chemoradiation therapy. J. Gastrointest. Surg. 10, 1319–1328 (2006).

    Article  PubMed  Google Scholar 

  68. Habr-Gama, A. Assessment and management of the complete clinical response of rectal cancer to chemoradiotherapy. Colorectal Dis. 8 (Suppl. 3), 21–24 (2006).

    Article  PubMed  Google Scholar 

  69. Maas, M. et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J. Clin. Oncol. 29, 4633–4640 (2011).

    Article  PubMed  Google Scholar 

  70. Smith, F. M., Wiland, H., Mace, A., Pai, R. K. & Kalady, M. F. Clinical criteria underestimate complete pathological response in rectal cancer treated with neoadjuvant chemoradiotherapy. Dis. Colon Rectum 57, 311–315 (2014).

    Article  PubMed  Google Scholar 

  71. van Hagen, P. et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 366, 2074–2084 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, J. Y. & Hofstetter, W. L. Esophagectomy after chemoradiation: who and when to operate. Semin. Thorac. Cardiovasc. Surg. 24, 288–293 (2012).

    Article  PubMed  Google Scholar 

  73. Stahl, M. et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J. Clin. Oncol. 23, 2310–2317 (2005).

    Article  PubMed  Google Scholar 

  74. Furlong, H. et al. Targeting therapy for esophageal cancer in patients aged 70 and over. J. Geriatr. Oncol. 4, 107–113 (2013).

    Article  PubMed  Google Scholar 

  75. Edgren, G., Adami, H. O., Weiderpass, E. & Nyren, O. A global assessment of the oesophageal adenocarcinoma epidemic. Gut 62, 1406–1414 (2013).

    Article  PubMed  Google Scholar 

  76. Hong, M. K. et al. Percutaneous image-guided biopsy of prostate cancer metastases yields samples suitable for genomics and personalised oncology. Clin. Exp. Metastasis 31, 159–167 (2013).

    Article  PubMed  CAS  Google Scholar 

  77. Marshall, D., Laberge, J. M., Firetag, B., Miller, T. & Kerlan, R. K. The changing face of percutaneous image-guided biopsy: molecular profiling and genomic analysis in current practice. J. Vasc. Interv. Radiol. 24, 1094–1103 (2013).

    Article  PubMed  Google Scholar 

  78. Al-Leswas, D., O'Reilly, D. A. & Poston, G. J. Biopsy of solid liver tumors: adverse consequences. Hepatobiliary Pancreat. Dis. Int. 7, 325–327 (2008).

    PubMed  Google Scholar 

  79. Boutin, C., Rey, F. & Viallat, J. R. Prevention of malignant seeding after invasive diagnostic procedures in patients with pleural mesothelioma. A randomized trial of local radiotherapy. Chest 108, 754–758 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Jones, O. M., Rees, M., John, T. G., Bygrave, S. & Plant, G. Biopsy of resectable colorectal liver metastases causes tumour dissemination and adversely affects survival after liver resection. Br. J. Surg. 92, 1165–1168 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Liebens, F. et al. Breast cancer seeding associated with core needle biopsies: a systematic review. Maturitas 62, 113–123 (2009).

    Article  PubMed  Google Scholar 

  82. Mesker, W. E. et al. The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol. 29, 387–398 (2007).

    PubMed  PubMed Central  Google Scholar 

  83. Varga, Z. et al. Comparison of EndoPredict and Oncotype DX test results in hormone receptor positive invasive breast cancer. PLoS ONE 8, e58483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McShane, L. M. et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  85. Glynne-Jones, R. & Hughes, R. Critical appraisal of the 'wait and see' approach in rectal cancer for clinical complete responders after chemoradiation. Br. J. Surg. 99, 897–909 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. de Campos-Lobato, L. F. et al. Neoadjuvant therapy for rectal cancer: the impact of longer interval between chemoradiation and surgery. J. Gastrointest. Surg. 15, 444–450 (2011).

    Article  PubMed  Google Scholar 

  87. Tulchinsky, H., Shmueli, E., Figer, A., Klausner, J. M. & Rabau, M. An interval >7 weeks between neoadjuvant therapy and surgery improves pathologic complete response and disease-free survival in patients with locally advanced rectal cancer. Ann. Surg. Oncol. 15, 2661–2667 (2008).

    Article  PubMed  Google Scholar 

  88. Ruol, A. et al. Interval between neoadjuvant chemoradiotherapy and surgery for squamous cell carcinoma of the thoracic esophagus: does delayed surgery have an impact on outcome? Ann. Surg. 252, 788–796 (2010).

    Article  PubMed  Google Scholar 

  89. Buchholz, T. A. et al. Global gene expression changes during neoadjuvant chemotherapy for human breast cancer. Cancer J. 8, 461–468 (2002).

    Article  PubMed  Google Scholar 

  90. Zujewski, J. A. & Kamin, L. Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. Future Oncol. 4, 603–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bernards, R. A missing link in genotype-directed cancer therapy. Cell 151, 465–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Ferlay, J. et al. Globocan 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. Globocan 2012 [online], (2012).

  93. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Goel, A. & Boland, C. R. Epigenetics of colorectal cancer. Gastroenterology 143, 1442–1460 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 27–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Arnold, C. N., Goel, A. & Boland, C. R. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer 106, 66–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Baylin, S. B. Resistance, epigenetics and the cancer ecosystem. Nat. Med. 17, 288–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Huynh, K. T., Chong, K. K., Greenberg, E. S. & Hoon, D. S. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev. Mol. Diagn. 12, 371–382 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Lyko, F. & Brown, R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J. Natl Cancer Inst. 97, 1498–1506 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Sekeres, M. A. et al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood 120, 4945–4951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia-Manero, G. Demethylating agents in myeloid malignancies. Curr. Opin. Oncol. 20, 705–710 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Huang, Y., Nayak, S., Jankowitz, R., Davidson, N. E. & Oesterreich, S. Epigenetics in breast cancer: what's new? Breast Cancer Res. 13, 225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grady, W. M., Rajput, A., Lutterbaugh, J. D. & Markowitz, S. D. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 61, 900–902 (2001).

    CAS  PubMed  Google Scholar 

  104. Hellebrekers, D. M. et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin. Cancer Res. 15, 3990–3997 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Nagasaka, T. et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl Cancer Inst. 101, 1244–1258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ouyang, D. L., Chen, J. J., Getzenberg, R. H. & Schoen, R. E. Noninvasive testing for colorectal cancer: a review. Am. J. Gastroenterol. 100, 1393–1403 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Heyn, H. & Esteller, M. DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet. 13, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Goessl, C. et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 60, 5941–5945 (2000).

    CAS  PubMed  Google Scholar 

  109. Sunami, E. et al. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem. 55, 559–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Yegnasubramanian, S. et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64, 1975–1986 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Nakayama, H. et al. Molecular detection of p16 promoter methylation in the serum of recurrent colorectal cancer patients. Int. J. Cancer 105, 491–493 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Yamaguchi, S., Asao, T., Nakamura, J., Ide, M. & Kuwano, H. High frequency of DAP-kinase gene promoter methylation in colorectal cancer specimens and its identification in serum. Cancer Lett. 194, 99–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Tan, S. H. et al. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol. Rep. 18, 1225–1230 (2007).

    CAS  PubMed  Google Scholar 

  114. Ebert, M. P. et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 131, 1418–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Lofton-Day, C. et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 54, 414–423 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit J. Liefers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimers, M., Engels, C., Kuppen, P. et al. How does genome sequencing impact surgery?. Nat Rev Clin Oncol 11, 610–618 (2014). https://doi.org/10.1038/nrclinonc.2014.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.101

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer