Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early management of atrial fibrillation: from imaging to drugs to ablation

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is responsible for the highest number of rhythm-related disorders and cardioembolic strokes worldwide. Early management of this condition will lower the risk of AF-associated morbidity and mortality. Targeted drug therapy has an important role in preventing the progression of AF through modification of the substrate. Discovery of the role of pulmonary veins as a trigger has been an important breakthrough, leading to the development of pulmonary vein ablation—an established curative therapy for drug-resistant AF. Identifying the underlying reasons for the abnormal firing of venous cardiomyocytes and the widespread progressive alterations of atrial tissue found in persistent AF are challenges for the future. Novel imaging techniques may help to determine the right time for intervention, provide specific targets for ablation, and judge the efficacy of treatment. If new developments can successfully address these issues, the knowledge acquired as a result will have a vital role in preclinical and early management of AF.

Key Points

  • Atrial fibrillation (AF) is the most common cardiovascular rhythm disorder, and its worldwide prevalence is rapidly increasing owing to aging of the population

  • AF is a leading cause of morbidity and mortality; serious complications associated with this disorder include cardioembolic stroke and heart failure

  • Erratic electrical impulses from pulmonary venous cardiomyocytes initiate paroxysmal AF, and ablation of the venous foci is the recommended curative therapy for drug-refractory AF

  • Further research is needed to understand why pulmonary veins generate impulses that induce AF, which will allow the development of drugs that act on these triggers to prevent undue firing

  • Developing drugs with targets upstream in the disease process and the use of novel noninvasive diagnostic tools, such as body surface mapping and cardiac MRI, could help to ameliorate AF

  • Intrinsic and extrinsic stressors cause widespread and progressive remodeling of the atrial tissue, giving rise to persistent AF; early initiation of therapy is necessary to prevent the progression of AF

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The influence of trigger and substrate on atrial fibrillation.
Figure 2: Maintenance of normal rhythm in patients with atrial fibrillation using antiarrhythmic drugs and catheter ablation.
Figure 3: Pathogenesis of atrial fibrillation.
Figure 4: Isochronal map of biatrial activation during fast, regular, and organized arrhythmias arising from the LAA.
Figure 5: Transverse slice of the LA imaged with DE-MRI.

Similar content being viewed by others

References

  1. Zhang, S. Atrial fibrillation in mainland China: epidemiology and current management. Heart 95, 1052–1055 (2009).

    CAS  PubMed  Google Scholar 

  2. Ohsawa, M. et al. Mortality risk attributable to atrial fibrillation in middle-aged and elderly people in the Japanese general population: nineteen-year follow-up in NIPPON DATA80. Circ. J. 71, 814–819 (2007).

    PubMed  Google Scholar 

  3. Go, A. S. et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285, 2370–2375 (2001).

    CAS  PubMed  Google Scholar 

  4. Pieri, A. et al. Prevalence of cardiovascular risk factors among elderly Brazilians over eighty with ischemic stroke. Arq. Neuropsiquiatr. 66, 454–457 (2008).

    PubMed  Google Scholar 

  5. Heeringa, J. et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953 (2006).

    PubMed  Google Scholar 

  6. Stewart, S., Hart, C. L., Hole, D. J. & McMurray, J. J. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. Heart 86, 516–521 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmutz, M. et al. Low prevalence of atrial fibrillation in asymptomatic adults in Geneva, Switzerland. Europace 12, 475–481 (2010).

    PubMed  Google Scholar 

  8. Bilato, C. et al. Prevalence, functional impact, and mortality of atrial fibrillation in an older Italian population (from the Pro.V.A. study). Am. J. Cardiol. 104, 1092–1097 (2009).

    PubMed  Google Scholar 

  9. Simons, L. A., Simons, J., Friedlander, Y. & McCallum, J. A comparison of risk factors for coronary heart disease and ischaemic stroke: the Dubbo study of Australian elderly. Heart Lung Circ. 18, 330–333 (2009).

    CAS  PubMed  Google Scholar 

  10. Calkins, H. et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace 9, 335–379 (2007).

    PubMed  Google Scholar 

  11. Haïssaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    PubMed  Google Scholar 

  12. Kirchhof, P. et al. Early and comprehensive management of atrial fibrillation: executive summary of the proceedings from the 2nd AFNET-EHRA consensus conference 'research perspectives in AF'. Eur. Heart J. 30, 2969c–2977c (2009).

    Google Scholar 

  13. Allessie, M., Ausma, J. & Schotten, U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 54, 230–246 (2002).

    CAS  PubMed  Google Scholar 

  14. Burstein, B. & Nattel, S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 51, 802–809 (2008).

    CAS  PubMed  Google Scholar 

  15. Burstein, B., Qi, X. Y., Yeh, Y. H., Calderone, A. & Nattel, S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc. Res. 76, 442–452 (2007).

    CAS  PubMed  Google Scholar 

  16. Jahangir, A. et al. Long-term progression and outcomes with aging in patients with lone atrial fibrillation: a 30-year follow-up study. Circulation 115, 3050–3056 (2007).

    PubMed  Google Scholar 

  17. Lévy, S. et al. Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study. The College of French Cardiologists. Circulation 99, 3028–3035 (1999).

    PubMed  Google Scholar 

  18. Kerr, C. R. et al. Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian Registry of Atrial Fibrillation. Am. Heart J. 149, 489–496 (2005).

    PubMed  Google Scholar 

  19. de Vos, C. B. et al. Paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J. Am. Coll. Cardiol. 55, 725–731 (2010).

    PubMed  Google Scholar 

  20. Kopecky, S. L. et al. The natural history of lone atrial fibrillation. A population-based study over three decades. N. Engl. J. Med. 317, 669–674 (1987).

    CAS  PubMed  Google Scholar 

  21. Brand, F. N., Abbott, R. D., Kannel, W. B. & Wolf, P. A. Characteristics and prognosis of lone atrial fibrillation. 30-year follow-up in the Framingham Study. JAMA 254, 3449–3453 (1985).

    CAS  PubMed  Google Scholar 

  22. van Walraven, C. et al. A clinical prediction rule to identify patients with atrial fibrillation and a low risk for stroke while taking aspirin. Arch. Intern. Med. 163, 936–943 (2003).

    PubMed  Google Scholar 

  23. Wyse, D. G. & Gersh, B. J. Atrial fibrillation: a perspective: thinking inside and outside the box. Circulation 109, 3089–3095 (2004).

    PubMed  Google Scholar 

  24. Saksena, S., Hettrick, D. A., Koehler, J. L., Grammatico, A. & Padeletti, L. Progression of paroxysmal atrial fibrillation to persistent atrial fibrillation in patients with bradyarrhythmias. Am. Heart J. 154, 884–892 (2007).

    PubMed  Google Scholar 

  25. Wang, T. J. et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation 107, 2920–2925 (2003).

    PubMed  Google Scholar 

  26. Nerheim, P., Birger-Botkin, S., Piracha, L. & Olshansky, B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation 110, 247–252 (2004).

    PubMed  Google Scholar 

  27. Shinbane, J. S. et al. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J. Am. Coll. Cardiol. 29, 709–715 (1997).

    CAS  PubMed  Google Scholar 

  28. Carlsson, J. et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J. Am. Coll. Cardiol. 41, 1690–1696 (2003).

    PubMed  Google Scholar 

  29. Van Gelder, I. C. et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N. Engl. J. Med. 347, 1834–1840 (2002).

    PubMed  Google Scholar 

  30. Wyse, D. G. et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N. Engl. J. Med. 347, 1825–1833 (2002).

    CAS  PubMed  Google Scholar 

  31. Roy, D. et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N. Engl. J. Med. 358, 2667–2677 (2008).

    CAS  PubMed  Google Scholar 

  32. Anter, E. & Callans, D. Pharmacological and electrical conversion of atrial fibrillation to sinus rhythm is worth the effort. Circulation 120, 1436–1443 (2009).

    PubMed  Google Scholar 

  33. Corley, S. D. et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation 109, 1508–1513 (2004).

    Google Scholar 

  34. Guglin, M., Chen, R. & Curtis, A. B. Sinus rhythm is associated with fewer heart failure symptoms: Insights from the AFFIRM trial. Heart Rhythm doi:10.1016/j.hrthm.2010.01.003.

    PubMed  Google Scholar 

  35. Hagens, V. E. et al. Rate control versus rhythm control for patients with persistent atrial fibrillation with mild to moderate heart failure: results from the RAte Control versus Electrical cardioversion (RACE) study. Am. Heart J. 149, 1106–1111 (2005).

    PubMed  Google Scholar 

  36. European Heart Rhythm Association et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J. Am. Coll. Cardiol. 48, 854–906 (2006).

  37. Reimold, S. C., Cantillon, C. O., Friedman, P. L. & Antman, E. M. Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. Am. J. Cardiol. 71, 558–563 (1993).

    CAS  PubMed  Google Scholar 

  38. AFFIRM First Antiarrhythmic Drug Substudy Investigators. Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug. J. Am. Coll. Cardiol. 42, 20–29 (2003).

  39. Calkins, H. et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ. Arrhythm. Electrophysiol. 2, 349–361 (2009).

    CAS  PubMed  Google Scholar 

  40. Dorian, P. & Mangat, I. Quality of life variables in the selection of rate versus rhythm control in patients with atrial fibrillation: observations from the Canadian Trial of Atrial Fibrillation. Card. Electrophysiol. Rev. 7, 276–279 (2003).

    PubMed  Google Scholar 

  41. Fiala, M. et al. Termination of long-lasting persistent versus short-lasting persistent and paroxysmal atrial fibrillation by ablation. Pacing Clin. Electrophysiol. 31, 985–997 (2008).

    PubMed  Google Scholar 

  42. Trip, M. D., Wiersinga, W. & Plomp, T. A. Incidence, predictability, and pathogenesis of amidarone-induced thyrotoxicosis and hypothyroidism. Am. J. Med. 91, 507–511 (1991).

    CAS  PubMed  Google Scholar 

  43. Batcher, E. L. et al. Thyroid function abnormalities during amiodarone therapy for persistent atrial fibrillation. Am. J. Med. 120, 880–885 (2007).

    CAS  PubMed  Google Scholar 

  44. Dusman, R. E. et al. Clinical features of amiodarone-induced pulmonary toxicity. Circulation 82, 51–59 (1990).

    CAS  PubMed  Google Scholar 

  45. Torp-Pedersen, C. et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. N. Engl. J. Med. 341, 857–865 (1999).

    CAS  PubMed  Google Scholar 

  46. Han, F. T. et al. Results of a minimally invasive surgical pulmonary vein isolation and ganglionic plexi ablation for atrial fibrillation: single-center experience with 12-month follow-up. Circ. Arrhythm. Electrophysiol. 2, 370–377 (2009).

    CAS  PubMed  Google Scholar 

  47. Nabauer, M. et al. The Registry of the German Competence NETwork on Atrial Fibrillation: patient characteristics and initial management. Europace 11, 423–434 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Camm, A. J., Kirchhof, P., Lip, G. Y. H., Savelieva, I. & Ernst, S. in The ESC Textbook of Cardiovascular Medicine 2nd edn Ch. 29 (eds Camm, A. J., Lüscher, T. & Serruys, P. W.) 1069–1132 (Oxford University Press, 2009).

    Google Scholar 

  49. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    CAS  PubMed  Google Scholar 

  50. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    CAS  PubMed  Google Scholar 

  51. Sanders, P. et al. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108, 1461–1468 (2003).

    PubMed  Google Scholar 

  52. Kannel, W. B., Wolf, P. A., Benjamin, E. J. & Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am. J. Cardiol. 82, 2N–9N (1998).

    CAS  PubMed  Google Scholar 

  53. Benjamin, E. J. et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 271, 840–844 (1994).

    CAS  PubMed  Google Scholar 

  54. Narayan, S. M., Kazi, D., Krummen, D. E. & Rappel, W. J. Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation: a mechanism for the initiation of atrial fibrillation by premature beats. J. Am. Coll. Cardiol. 52, 1222–1230 (2008).

    PubMed  PubMed Central  Google Scholar 

  55. Patterson, E. et al. Spontaneous pulmonary vein firing in man: relationship to tachycardia-pause early after depolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J. Cardiovasc. Electrophysiol. 18, 1067–1075 (2007).

    PubMed  Google Scholar 

  56. Po, S. S. et al. Rapid and stable re-entry within the pulmonary vein as a mechanism initiating paroxysmal atrial fibrillation. J. Am. Coll. Cardiol. 45, 1871–1877 (2005).

    PubMed  Google Scholar 

  57. Gudbjartsson, D. F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448, 353–357 (2007).

    CAS  PubMed  Google Scholar 

  58. Ghanem, R. N., Ramanathan, C., Jia, P. & Rudy, Y. Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Trans. Med. Imaging 22, 1307–1318 (2003).

    PubMed  PubMed Central  Google Scholar 

  59. Comprehensive Arrhythmia Research & Management Center. DE-MRI Determinant of Successful Radiofrequency Catheter Ablation of Atrial Fibrillation (DECAAF) [online], (2010).

  60. Oakes, R. S. et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119, 1758–1767 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Li, D. et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104, 2608–2614 (2001).

    CAS  PubMed  Google Scholar 

  62. Goette, A. et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101, 2678–2681 (2000).

    CAS  PubMed  Google Scholar 

  63. Salehian, O. et al. Impact of ramipril on the incidence of atrial fibrillation: results of the Heart Outcomes Prevention Evaluation study. Am. Heart J. 154, 448–453 (2007).

    CAS  PubMed  Google Scholar 

  64. Haywood, L. J. et al. Atrial fibrillation at baseline and during follow-up in ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial). J. Am. Coll. Cardiol. 54, 2023–2031 (2009).

    CAS  PubMed  Google Scholar 

  65. Kumagai, K. et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J. Am. Coll. Cardiol. 41, 2197–2204 (2003).

    CAS  PubMed  Google Scholar 

  66. Healey, J. S. et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J. Am. Coll. Cardiol. 45, 1832–1839 (2005).

    CAS  PubMed  Google Scholar 

  67. Pedersen, O. D., Bagger, H., Køber, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100, 376–380 (1999).

    CAS  PubMed  Google Scholar 

  68. Wachtell, K. et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J. Am. Coll. Cardiol. 45, 712–719 (2005).

    CAS  PubMed  Google Scholar 

  69. Madrid, A. H. et al. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 106, 331–336 (2002).

    CAS  PubMed  Google Scholar 

  70. GISSI-AF investigators. Valsartan for prevention of recurrent atrial fibrillation. N. Engl. J. Med. 360, 1606–1617 (2009).

  71. Cleland, J. G. et al. Clinical trials update from the European Society of Cardiology Meeting 2009: AAA, RELY, PROTECT, ACTIVE-I, European CRT survey, German pre-SCD II registry, and MADIT-CRT. Eur. J. Heart Fail. 11, 1214–1219 (2009).

    PubMed  Google Scholar 

  72. Goette, A. et al. Angiotensin II antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial: rationale and study design. Clin. Drug Investig. 27, 697–705 (2007).

    CAS  PubMed  Google Scholar 

  73. Belluzzi, F. et al. Prevention of recurrent lone atrial fibrillation by the angiotensin-II converting enzyme inhibitor ramipril in normotensive patients. J. Am. Coll. Cardiol. 53, 24–29 (2009).

    CAS  PubMed  Google Scholar 

  74. L'Allier, P. L. et al. Angiotensin-converting enzyme inhibition in hypertensive patients is associated with a reduction in the occurrence of atrial fibrillation. J. Am. Coll. Cardiol. 44, 159–164 (2004).

    CAS  PubMed  Google Scholar 

  75. Patti, G. et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation 114, 1455–1461 (2006).

    CAS  PubMed  Google Scholar 

  76. Adam, O., Neuberger, H. R., Böhm, M. & Laufs, U. Prevention of atrial fibrillation with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Circulation 118, 1285–1293 (2008).

    PubMed  Google Scholar 

  77. Calò, L. et al. N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. J. Am. Coll. Cardiol. 45, 1723–1728 (2005).

    PubMed  Google Scholar 

  78. Halonen, J. et al. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA 297, 1562–1567 (2007).

    CAS  PubMed  Google Scholar 

  79. Saravanan, P. et al. Omega-3 fatty acid supplementation does not reduce risk of atrial fibrillation after coronary artery bypass surgery: a randomized, double-blind, placebo-controlled clinical trial. Circ. Arrhythm. Electrophysiol. 3, 46–53 (2010).

    CAS  PubMed  Google Scholar 

  80. Piccini, J. P. et al. Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation. J. Am. Coll. Cardiol. 54, 1089–1095 (2009).

    CAS  PubMed  Google Scholar 

  81. Køber, L. et al. Increased mortality after dronedarone therapy for severe heart failure. N. Engl. J. Med. 358, 2678–2687 (2008).

    PubMed  Google Scholar 

  82. Hohnloser, S. H. et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N. Engl. J. Med. 360, 668–678 (2009).

    CAS  PubMed  Google Scholar 

  83. Singh, B. N. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N. Engl. J. Med. 357, 987–999 (2007).

    CAS  PubMed  Google Scholar 

  84. Mason, P. K. & DiMarco, J. P. New pharmacological agents for arrhythmias. Circ. Arrhythm. Electrophysiol. 2, 588–597 (2009).

    CAS  PubMed  Google Scholar 

  85. Comtois, P. et al. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates. Am. J. Physiol. Heart Circ. Physiol. 295, H1489–H1504 (2008).

    CAS  PubMed  Google Scholar 

  86. Roy, D. et al. Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a phase 3, randomized, placebo-controlled trial. Circulation 117, 1518–1525 (2008).

    CAS  PubMed  Google Scholar 

  87. Cardiome Pharma Corporation. Cardiome announces positive phase 2b results for oral vernakalant [online], (2008).

  88. Murdock, D. K., Overton, N., Kersten, M., Kaliebe, J. & Devecchi, F. The effect of ranolazine on maintaining sinus rhythm in patients with resistant atrial fibrillation. Indian Pacing Electrophysiol. J. 8, 175–181 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Scirica, B. M. et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116, 1647–1652 (2007).

    CAS  PubMed  Google Scholar 

  90. Piccini, J. P. et al. Pulmonary vein isolation for the maintenance of sinus rhythm in patients with atrial fibrillation: a meta-analysis of randomized, controlled trials. Circ. Arrhythm. Electrophysiol. 2, 626–633 (2009).

    PubMed  Google Scholar 

  91. Shah, A. N. et al. Long-term outcome following successful pulmonary vein isolation: pattern and prediction of very late recurrence. J. Cardiovasc. Electrophysiol. 19, 661–667 (2008).

    PubMed  Google Scholar 

  92. Jiang, C. Y. et al. Early detection of pulmonary vein reconnection after isolation in patients with paroxysmal atrial fibrillation: a comparison of ATP-induction and reassessment at 30 minutes postisolation. J. Cardiovasc. Electrophysiol. 20, 1382–1387 (2009).

    PubMed  Google Scholar 

  93. Sauer, W. H. et al. Clinical predictors and outcomes associated with acute return of pulmonary vein conduction during pulmonary vein isolation for treatment of atrial fibrillation. Heart Rhythm 3, 1024–1028 (2006).

    PubMed  Google Scholar 

  94. Cappato, R. et al. Prospective assessment of late conduction recurrence across radiofrequency lesions producing electrical disconnection at the pulmonary vein ostium in patients with atrial fibrillation. Circulation 108, 1599–1604 (2003).

    PubMed  Google Scholar 

  95. Knecht, S. et al. Left atrial linear lesions are required for successful treatment of persistent atrial fibrillation. Eur. Heart J. 29, 2359–2366 (2008).

    PubMed  Google Scholar 

  96. Cappato, R. et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 32–38 (2010).

    PubMed  Google Scholar 

  97. Fonarow, G. C. et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke. Circulation 121, 879–891 (2010).

    PubMed  Google Scholar 

  98. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    CAS  PubMed  Google Scholar 

  99. Albers, G. W. et al. Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA 293, 690–698 (2005).

    PubMed  Google Scholar 

  100. European Heart Rhythm Association (EHRA) et al. HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 4, 816–861 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Haïssaguerre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A., Liu, X., Jadidi, A. et al. Early management of atrial fibrillation: from imaging to drugs to ablation. Nat Rev Cardiol 7, 345–354 (2010). https://doi.org/10.1038/nrcardio.2010.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing