Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of cardiac multidetector CT beyond coronary angiography

Abstract

Noninvasive imaging of the coronary arteries using multidetector CT (MDCT) represents one of the most promising diagnostic imaging advances in contemporary cardiology. This challenging application has driven a rapid and impressive advancement in CT technology over the past 10 years; leading to increased spatial and temporal resolution, decreased scan times and substantial reductions in radiation dose. Recent technological improvements have not only improved the status of CT coronary angiography but have also enabled new functional myocardial applications that are gaining a foothold in clinical practice as adjuncts or replacements for conventional coronary angiographic studies. Wide-detector CT designs along with prospective ECG-triggered protocols have opened the possibility of performing multiple complementary myocardial measurements during a coronary CT exam with acceptable radiation and contrast exposure. In this Review, we discuss recent technical developments in cardiac MDCT and outline newly enabled noncoronary cardiac applications including viability assessment, myocardial perfusion and molecular imaging.

Key Points

  • Advances in scanner technology and imaging protocols have enabled noncoronary applications of multidetector CT (MDCT)

  • MDCT can be used to evaluate myocardial viability

  • Assessment of myocardial blood flow by MDCT is feasible under conditions of rest and stress

  • Current MDCT technology has the potential to visualize cells and molecular targets

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Technical progression of scanner technology.
Figure 2: Dual energy acquisition of perfusion deficits (black arrows) are shown as short-axis multiplanar reformation.
Figure 3: Examples of CT coronary angiography ECG-gating protocols for the 320-slice detector system.
Figure 4: Time course of contrast enhancement in an acute myocardial infarction after intravenous iodine injection.
Figure 5: Examples of coronary-MDCT and DE-MDCT in three representative patients.
Figure 6: Comparison of prospective and retrospective ECG-gated MDCT images obtained 10 min after injection of contrast agent.
Figure 7: Helical and dynamic MDCT perfusion imaging of a canine model of LAD stenosis.
Figure 8: Wide-range detector MDCT perfusion imaging protocol.

Similar content being viewed by others

References

  1. Miller, J. M. et al. Diagnostic performance of coronary angiography by 64-row CT. N. Engl. J. Med. 359, 2324–2336 (2008).

    Article  CAS  Google Scholar 

  2. Hamon, M. et al. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J. Am. Coll. Cardiol. 48, 1896–1910 (2006).

    Article  Google Scholar 

  3. Budoff, M. J. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 52, 1724–1732 (2008).

    Article  Google Scholar 

  4. Vanhoenacker, P. K. et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244, 419–428 (2007).

    Article  Google Scholar 

  5. Lin, F. Y. & Min, J. K. Assessment of cardiac volumes by multidetector computed tomography. J. Cardiovasc. Comput. Tomogr. 2, 256–262 (2008).

    Article  Google Scholar 

  6. Sayyed, S. H., Cassidy, M. M. & Hadi, M. A. Use of multidetector computed tomography for evaluation of global and regional left ventricular function. J. Cardiovasc. Comput. Tomogr. 3, S23–S34 (2009).

    Article  Google Scholar 

  7. Cury, R. C., Nieman, K., Shapiro, M. D., Nasir, K. & Brady, T. J. Comprehensive cardiac CT study: evaluation of coronary arteries, left ventricular function, and myocardial perfusion–is it possible? J. Nucl. Cardiol. 14, 229–243 (2007).

    Article  Google Scholar 

  8. Stanford, W. in CT of the Heart 3–12 (Humana Press, Totowa, 2005).

    Book  Google Scholar 

  9. Sagel, S. S. et al. Gated computed tomography of the human heart. Invest. Radiol. 12, 563–566 (1977).

    Article  CAS  Google Scholar 

  10. Kalender, W. A. et al. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176, 181–183 (1990).

    Article  CAS  Google Scholar 

  11. Mahesh, M. & Cody, D. D. Physics of cardiac imaging with multiple-row detector CT. Radiographics 27, 1495–1509 (2007).

    Article  Google Scholar 

  12. Ritman, E. L. et al. Three-dimensional imaging of heart, lungs, and circulation. Science 210, 273–280 (1980).

    Article  CAS  Google Scholar 

  13. Robb, R. A. & Ritman, E. L. High speed synchronous volume computed tomography of the heart. Radiology 133, 655–661 (1979).

    Article  CAS  Google Scholar 

  14. Das, M. et al. Individually adapted examination protocols for reduction of radiation exposure for 16-MDCT chest examinations. AJR Am. J. Roentgenol. 184, 1437–1443 (2005).

    Article  Google Scholar 

  15. Achenbach, S. et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography–initial experience. Eur. J. Radiol. 57, 331–335 (2006).

    Article  Google Scholar 

  16. Johnson, T. R. et al. Dual-source CT cardiac imaging: initial experience. Eur. Radiol. 16, 1409–1415 (2006).

    Article  Google Scholar 

  17. Scheffel, H. et al. Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control. Eur. Radiol. 16, 2739–2747 (2006).

    Article  Google Scholar 

  18. Bastarrika, G. et al. Dual-source CT for visualization of the coronary arteries in heart transplant patients with high heart rates. AJR Am. J. Roentgenol. 191, 448–454 (2008).

    Article  Google Scholar 

  19. Matt, D. et al. Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am. J. Roentgenol. 189, 567–573 (2007).

    Article  Google Scholar 

  20. Alkadhi, H. et al. Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur. J. Radiol. 68, 385–391 (2008).

    Article  Google Scholar 

  21. Stolzmann, P. et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249, 71–80 (2008).

    Article  Google Scholar 

  22. George, R. T. et al. Adenosine stress 64 and 256 row detector computed tomography angiography and abnormalities to predict atherosclerosis causing myocardial ischemia perfusion imaging: a pilot study evaluating the transmural extent of perfusion. Circ. Cardiovasc. Imaging 2, 174–182 (2009).

    Article  Google Scholar 

  23. Dewey, M. et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120, 867–875 (2009).

    Article  Google Scholar 

  24. Feuerlein, S. et al. Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology 249, 1010–1016 (2008).

    Article  Google Scholar 

  25. Alvarez, R. E. & Macovski, A. Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 21, 733–744 (1976).

    Article  CAS  Google Scholar 

  26. Barreto, M. et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J. Cardiovasc. Comput. Tomogr. 2, 234–242 (2008).

    Article  Google Scholar 

  27. Boll, D. T. et al. Spectral coronary multidetector computed tomography angiography: dual benefit by facilitating plaque characterization and enhancing lumen depiction. J. Comput. Assist. Tomogr. 30, 804–811 (2006).

    Article  Google Scholar 

  28. Schwarz, F. et al. Dual-energy CT of the heart–principles and protocols. Eur. J. Radiol. 68, 423–433 (2008).

    Article  Google Scholar 

  29. Ruzsics, B. et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am. J. Cardiol. 104, 318–326 (2009).

    Article  Google Scholar 

  30. Ruzsics, B. et al. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur. Radiol. 18, 2414–2424 (2008).

    Article  Google Scholar 

  31. Mahesh, M. in MDCT Physics: The Basics—Technology, Image Quality and Radiation Dose 97–114 (Lippincot Williams & Wilkins, Philadelphia, 2009).

    Google Scholar 

  32. Mahesh, M. in MDCT Physics: The Basics—Technology, Image Quality and Radiation Dose 47–78 (Lippincott Williams & Wilkins, Philadelphia, 2009).

    Google Scholar 

  33. Dewey, M., Teige, F., Laule, M. & Hamm, B. Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur. Radiol. 17, 2829–2837 (2007).

    Article  Google Scholar 

  34. Mollet, N. R. et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112, 2318–2323 (2005).

    Article  Google Scholar 

  35. Einstein, A. J., Moser, K. W., Thompson, R. C., Cerqueira, M. D. & Henzlova, M. J. Radiation dose to patients from cardiac diagnostic imaging. Circulation 116, 1290–1305 (2007).

    Article  Google Scholar 

  36. Husmann, L. et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur. Heart J. 29, 191–197 (2008).

    Article  Google Scholar 

  37. Rybicki, F. J. et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int. J. Cardiovasc. Imaging 24, 535–546 (2008).

    Article  Google Scholar 

  38. Achenbach, S. et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 3, 117–121 (2009).

    Article  Google Scholar 

  39. Ertel, D. et al. Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur. Radiol. doi:10.1007/s00330-009-1503–6.

  40. Kitagawa, K., Lardo, A. C., Lima, J. A. & George, R. T. Prospective ECG-gated 320 row detector computed tomography: implications for CT angiography and perfusion imaging. Int. J. Cardiovasc. Imaging 25, 201–208 (2009).

    Article  Google Scholar 

  41. Gray, W. R., Buja, L. M., Hagler, H. K., Parkey, R. W. & Willerson, J. T. Computed tomography for localization and sizing of experimental acute myocardial infarcts. Circulation 58, 497–504 (1978).

    Article  CAS  Google Scholar 

  42. Gray, W. R. Jr et al. Computed tomography: in vitro evaluation of myocardial infarction. Radiology 122, 511–513 (1977).

    Article  Google Scholar 

  43. Higgins, C. B., Sovak, M., Schmidt, W. & Siemers, P. T. Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary report. Invest. Radiol. 13, 337–339 (1978).

    Article  CAS  Google Scholar 

  44. Higgins, C. B., Sovak, M., Schmidt, W. & Siemers, P. T. Differential accumulation of radiopaque contrast material in acute myocardial infarction. Am. J. Cardiol. 43, 47–51 (1979).

    Article  CAS  Google Scholar 

  45. Doherty, P. W. et al. Detection and quantitation of myocardial infarction in vivo using transmission computed tomography. Circulation 63, 597–606 (1981).

    Article  CAS  Google Scholar 

  46. Huber, D. J., Lapray, J. F. & Hessel, S. J. In vivo evaluation of experimental myocardial infarcts by ungated computed tomography. AJR Am. J. Roentgenol. 136, 469–473 (1981).

    Article  CAS  Google Scholar 

  47. Nikolaou, K. et al. Assessment of myocardial infarctions using multidetector-row computed tomography. J. Comput. Assist. Tomogr. 28, 286–292 (2004).

    Article  Google Scholar 

  48. Cury, R. C. et al. Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology 248, 466–475 (2008).

    Article  Google Scholar 

  49. Mahnken, A. H. et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 2042–2047 (2005).

    Article  Google Scholar 

  50. Nieman, K. et al. Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology 247, 49–56 (2008).

    Article  Google Scholar 

  51. Canty, J. M. Jr, Judd, R. M., Brody, A. S. & Klocke, F. J. First-pass entry of nonionic contrast agent into the myocardial extravascular space. Effects on radiographic estimates of transit time and blood volume. Circulation 84, 2071–2078 (1991).

    Article  CAS  Google Scholar 

  52. Newhouse, J. H. & Murphy, R. X. Jr Tissue distribution of soluble contrast: effect of dose variation and changes with time. AJR Am. J. Roentgenol. 136, 463–467 (1981).

    Article  CAS  Google Scholar 

  53. Lardo, A. C. et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113, 394–404 (2006).

    Article  Google Scholar 

  54. Baks, T. et al. Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J. Am. Coll. Cardiol. 48, 144–152 (2006).

    Article  Google Scholar 

  55. Schuleri, K. H. et al. Characterization of peri-infarct zone heterogeneity by contrast-enhanced multidetector computed tomography: a comparison with magnetic resonance imaging. J. Am. Coll. Cardiol. 53, 1699–1707 (2009).

    Article  Google Scholar 

  56. Gerber, B. L. et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113, 823–833 (2006).

    Article  Google Scholar 

  57. le Polain de Waroux, J. B. et al. Combined coronary and late-enhanced multidetector-computed tomography for delineation of the etiology of left ventricular dysfunction: comparison with coronary angiography and contrast-enhanced cardiac magnetic resonance imaging. Eur. Heart J. 29, 2544–2551 (2008).

    Article  Google Scholar 

  58. Holz, A. et al. Expanding the versatility of cardiac PET/CT: feasibility of delayed contrast enhancement CT for infarct detection in a porcine model. J. Nucl. Med. 50, 259–265 (2009).

    Article  Google Scholar 

  59. Lautamäki, R. et al. Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: evaluation in a porcine model of myocardial infarction. Circ. Cardiovasc. Imaging 2, 299–305 (2009).

    Article  Google Scholar 

  60. Habis, M. et al. Acute myocardial infarction early viability assessment by 64-slice computed tomography immediately after coronary angiography: comparison with low-dose dobutamine echocardiography. J. Am. Coll. Cardiol. 49, 1178–1185 (2007).

    Article  Google Scholar 

  61. Sato, A. et al. Early validation study of 64-slice multidetector computed tomography for the assessment of myocardial viability and the prediction of left ventricular remodelling after acute myocardial infarction. Eur. Heart J. 29, 490–498 (2008).

    Article  Google Scholar 

  62. Dambrin, G. et al. Diagnostic value of ECG-gated multidetector computed tomography in the early phase of suspected acute myocarditis. A preliminary comparative study with cardiac MRI. Eur. Radiol. 17, 331–338 (2007).

    Article  Google Scholar 

  63. Chang, H. J. et al. Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. JACC Cardiovasc. Imaging 2, 412–420 (2009).

    Article  Google Scholar 

  64. Wu, K. C. & Lima, J. A. Noninvasive imaging of myocardial viability: current techniques and future developments. Circ. Res. 93, 1146–1158 (2003).

    Article  CAS  Google Scholar 

  65. Rumberger, J. A. et al. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report. J. Am. Coll. Cardiol. 9, 59–69 (1987).

    Article  CAS  Google Scholar 

  66. Wolfkiel, C. J. et al. Measurement of myocardial blood flow by ultrafast computed tomography. Circulation 76, 1262–1273 (1987).

    Article  CAS  Google Scholar 

  67. George, R. T. et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J. Am. Coll. Cardiol. 48, 153–160 (2006).

    Article  Google Scholar 

  68. George, R. T. et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest. Radiol. 42, 815–822 (2007).

    Article  Google Scholar 

  69. Sinusas, A. B. F. et al. Multimodality cardiovascular molecular imaging, part I. Circ. Cardiovasc. Imaging 1, 244–256 (2008).

    Article  Google Scholar 

  70. Speck, U. Contrast agents: X-ray contrast agents and molecular imaging—a contradiction? Handb. Exp. Pharmacol. 185, 167–175 (2008).

    Article  CAS  Google Scholar 

  71. Hyafil, F. et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 13, 636–641 (2007).

    Article  CAS  Google Scholar 

  72. Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).

    Article  CAS  Google Scholar 

  73. Dilmanian, F. A. et al. Single-and dual-energy CT with monochromatic synchrotron X-rays. Phys. Med. Biol. 42, 371–387 (1997).

    Article  CAS  Google Scholar 

  74. Popovtzer, R. et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano. Lett. 8, 4593–4596 (2008).

    Article  CAS  Google Scholar 

  75. Barnett, B. P. et al. Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Mol. Pharm. 3, 531–538 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. Lardo.

Ethics declarations

Competing interests

A. C. Lardo has received research support and honoraria to lecture on cardiovascular CT from Toshiba Medical Systems Inc. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict-of-interest policies.

R. T. George has received research support from Astellas Pharma US, and Toshiba Medical Systems.

K. H. Schuleri declares no competing interests.

Supplementary information

Supplementary Figure 1

New molecular CT contrast agent. (a) Schematic representation of the iodinated compound of the contrast agent N1177 with the three iodine atoms in red. Optical microscopy in a phase-contrast mode of macrophages after a 1 h incubation in vitro (b) with N1177 or (c) with the conventional CT contrast agent. Numerous dark granules were visualized only in the cytoplasm of macrophages incubated with N1177. Scale bar, 100 µm. Permission obtained from Nature Publishing Group © Hyafil, F. et al. Nat. Med. 13, 636–641 (2007). (JPG 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuleri, K., George, R. & Lardo, A. Applications of cardiac multidetector CT beyond coronary angiography. Nat Rev Cardiol 6, 699–710 (2009). https://doi.org/10.1038/nrcardio.2009.172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing