Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer

Abstract

The generation of DNA lesions and the resulting activation of DNA damage response (DDR) pathways are both affected by the chromatin status at the site of damaged DNA. In turn, DDR activation affects the chromatin at both the damaged site and across the whole genome. Cellular senescence and cancer are associated with the engagement of the DDR pathways and with profound chromatin changes. In this Opinion article, we discuss the interplay between chromatin and DDR factors in the context of cellular senescence that is induced by oncogenes and in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DNA damage response
Figure 2: Chromatin remodellers and histone modifiers following DNA damage induction.
Figure 3: Histone modifications involved in DDR signalling.
Figure 4: Proposed model of the connection between chromatin alterations, the DDR and OIS.

Similar content being viewed by others

References

  1. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Dillon, N. Heterochromatin structure and function. Biol. Cell 96, 631–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. d'Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nature Rev. Cancer 8, 512–522 (2008).

    Article  CAS  Google Scholar 

  4. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Lopez-Contreras, A. J. & Fernandez-Capetillo, O. The ATR barrier to replication-born DNA damage. DNA Repair 9, 1249–1255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  10. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Evan, G. I. & d'Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev. 19, 25–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer 6, 472–476 (2006).

    Article  CAS  Google Scholar 

  14. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ogrunc, M. & di Fagagna, F. Never-ageing cellular senescence. Eur. J. Cancer 47, 1616–1622 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elia, M. C. & Bradley, M. O. Influence of chromatin structure on the induction of DNA double strand breaks by ionizing radiation. Cancer Res. 52, 1580–1586 (1992).

    CAS  PubMed  Google Scholar 

  19. Costes, S. V. et al. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput. Biol. 3, e155 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cowell, I. G. et al. γH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2, e1057 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biol. 13, 292–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, J. A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J. E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murga, M. et al. Global chromatin compaction limits the strength of the DNA damage response. J. Cell Biol. 178, 1101–1108 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iacovoni, J. S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Goodarzi, A. A., Kurka, T. & Jeggo, P. A. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nature Struct. Mol. Biol. 18, 831–839 (2011).

    Article  CAS  Google Scholar 

  27. Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Yokoe, T. et al. KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann. Surg. Oncol. 17, 821–828 (2010).

    Article  PubMed  Google Scholar 

  29. Ho, J. et al. Novel breast cancer metastasis-associated proteins. J. Proteome Res. 8, 583–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol. 9, 675–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Pentimalli, F. et al. HMGA1 protein is a novel target of the ATM kinase. Eur. J. Cancer 44, 2668–2679 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Palmieri, D. et al. HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 30, 3024–3035 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Fedele, M. & Fusco, A. HMGA and cancer. Biochim. Biophys. Acta 1799, 48–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Morrison, A. J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, S. et al. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nature Struct. Mol. Biol. 14, 1165–1172 (2007).

    Article  CAS  Google Scholar 

  39. Gospodinov, A. et al. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol. Cell. Biol. 31, 4735–4745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kashiwaba, S. et al. The mammalian INO80 complex is recruited to DNA damage sites in an ARP8 dependent manner. Biochem. Biophys. Res. Commun. 402, 619–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Papamichos-Chronakis, M. & Peterson, C. L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nature Struct. Mol. Biol. 15, 338–345 (2008).

    Article  CAS  Google Scholar 

  42. Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Park, J. H. et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J. 25, 3986–3997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klochendler-Yeivin, A., Picarsky, E. & Yaniv, M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol. Cell. Biol. 26, 2661–2674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J. & Kwon, J. A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 29, 1434–1445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Z. K. et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol. Cell. Biol. 22, 5975–5988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodellers and cancer. Nature Rev. Cancer 11, 481–492 (2011).

    Article  CAS  Google Scholar 

  49. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng, W., Ball, A. R. Jr & Yokomori, K. HP1: heterochromatin binding proteins working the genome. Epigenetics 5, 287–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ayoub, N., Jeyasekharan, A. D., Bernal, J. A. & Venkitaraman, A. R. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453, 682–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luijsterburg, M. S. et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J. Cell Biol. 185, 577–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zarebski, M., Wiernasz, E. & Dobrucki, J. W. Recruitment of heterochromatin protein 1 to DNA repair sites. Cytometry A 75, 619–625 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Ayoub, N., Jeyasekharan, A. D. & Venkitaraman, A. R. Mobilization and recruitment of HP1: a bimodal response to DNA breakage. Cell Cycle 8, 2945–2950 (2009).

    PubMed  Google Scholar 

  58. Baldeyron, C., Soria, G., Roche, D., Cook, A. J. & Almouzni, G. HP1α recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J. Cell Biol. 193, 81–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Koning, L. et al. Heterochromatin protein 1α: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol. Med. 1, 178–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dialynas, G. K., Vitalini, M. W. & Wallrath, L. L. Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat. Res. 647, 13–20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Norwood, L. E. et al. A requirement for dimerization of HP1Hsα in suppression of breast cancer invasion. J. Biol. Chem. 281, 18668–18676 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Kirschmann, D. A. et al. Down-regulation of HP1Hsα expression is associated with the metastatic phenotype in breast cancer. Cancer Res. 60, 3359–3363 (2000).

    CAS  PubMed  Google Scholar 

  63. Takanashi, M. et al. Heterochromatin protein 1γ epigenetically regulates cell differentiation and exhibits potential as a therapeutic target for various types of cancers. Am. J. Pathol. 174, 309–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Decottignies, A. & d'Adda di Fagagna, F. Epigenetic alterations associated with cellular senescence: a barrier against tumorigenesis or a red carpet for cancer? Semin. Cancer Biol. 21, 360–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Nuciforo, P. G., Luise, C., Capra, M., Pelosi, G. & d'Adda di Fagagna, F. Complex engagement of DNA damage response pathways in human cancer and in lung tumor progression. Carcinogenesis 28, 2082–2088 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Bonner, W. M. et al. γH2AX and cancer. Nature Rev. Cancer 8, 957–967 (2008).

    Article  CAS  Google Scholar 

  73. Novik, K. L. et al. Genetic variation in H2AFX contributes to risk of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev. 16, 1098–1106 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Y. et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 67, 2685–2692 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ginjala, V. et al. BMI1 is recruited to dna breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol. Cell. Biol. 31, 1972–1982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ismail, I. H., Andrin, C., McDonald, D. & Hendzel, M. J. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol. 191, 45–60 (2011).

    Article  CAS  Google Scholar 

  80. Chagraoui, J., Hebert, J., Girard, S. & Sauvageau, G. An anticlastogenic function for the Polycomb Group gene Bmi1. Proc. Natl Acad. Sci. USA 108, 5284–5289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, E. et al. Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS ONE 6, e17918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikura, T. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell. Biol. 27, 7028–7040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl Acad. Sci. USA 104, 20759–20763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of dna double-strand breaks. Mol. Cell 41, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Wu, J. et al. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol. Cell. Biol. 29, 849–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, Y. et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nature Cell Biol. 11, 1376–1382 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Park, Y. S. et al. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968–1976 (2008).

    Article  PubMed  Google Scholar 

  94. Muller-Tidow, C. et al. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116, 3564–3571 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oda, H. et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol. Cell 40, 364–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vidanes, G. M., Bonilla, C. Y. & Toczyski, D. P. Complicated tails: histone modifications and the DNA damage response. Cell 121, 973–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Pei, H. et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yan, Q. et al. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol. Cell 36, 110–120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schneider, A. C. et al. Global histone H4K20 trimethylation predicts cancer-specific survival in patients with muscle-invasive bladder cancer. BJU Int. 108, e290–e296 (2011).

    Article  PubMed  Google Scholar 

  102. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, C. C. et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Celic, I. et al. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr. Biol. 16, 1280–1289 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Driscoll, R., Hudson, A. & Jackson, S. P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315, 649–652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tjeertes, J. V., Miller, K. M. & Jackson, S. P. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878–1889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yuan, J., Pu, M., Zhang, Z. & Lou, Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8, 1747–1753 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Struct. Mol. Biol. 17, 1144–1151 (2010).

    Article  CAS  Google Scholar 

  109. Das, C., Lucia, M. S., Hansen, K. C. & Tyler, J. K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459, 113–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature Cell Biol. 8, 91–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Miyamoto, N. et al. Tip60 is regulated by circadian transcription factor clock and is involved in cisplatin resistance. J. Biol. Chem. 283, 18218–18226 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Suram, A. et al. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J. 31, 2839–2851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, R., Chen, W. & Adams, P. D. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol. Cell. Biol. 27, 2343–2358 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ye, X. et al. Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol. Cell. Biol. 27, 2452–2465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Toledo, L. I., Murga, M., Gutierrez-Martinez, P., Soria, R. & Fernandez-Capetillo, O. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22, 297–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jasencakova, Z. et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell 37, 736–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Stillman, B. Chromatin assembly during SV40 DNA replication in vitro. Cell 45, 555–565 (1986).

    Article  CAS  PubMed  Google Scholar 

  120. Mello, J. A. et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep. 3, 329–334 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Myung, K., Pennaneach, V., Kats, E. S. & Kolodner, R. D. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl Acad. Sci. USA 100, 6640–6645 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ye, X. et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11, 341–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Singh, G. & Klar, A. J. Mutations in deoxyribonucleotide biosynthesis pathway cause spreading of silencing across heterochromatic barriers at the mating-type region of the fission yeast. Yeast 25, 117–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Kosar, M. et al. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10, 457–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Corpet, A. et al. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J. 30, 480–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Kang, M. Y. et al. Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int. J. Cancer 121, 2192–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Bandyopadhyay, D. et al. Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 62, 6231–6239 (2002).

    CAS  PubMed  Google Scholar 

  129. Adams, P. D. Remodeling chromatin for senescence. Aging Cell 6, 425–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Ye, X. et al. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell 27, 183–196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Funayama, R., Saito, M., Tanobe, H. & Ishikawa, F. Loss of linker histone H1 in cellular senescence. J. Cell Biol. 175, 869–880 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. O'Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nature Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  CAS  Google Scholar 

  133. Narita, M. et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126, 503–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Adams, P. D. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397, 84–93 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sporn, J. C. et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28, 3423–3428 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38–51 (2006).

    Article  CAS  Google Scholar 

  137. Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature Rev. Drug Discov. 1, 287–299 (2002).

    Article  CAS  Google Scholar 

  138. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Karagiannis, T. C. & El-Osta, A. Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene 25, 3885–3893 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Camphausen, K. & Tofilon, P. J. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J. Clin. Oncol. 25, 4051–4056 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Aniello, F. et al. Expression of four histone lysine-methyltransferases in parotid gland tumors. Anticancer Res. 26, 2063–2067 (2006).

    CAS  Google Scholar 

  142. Chang, M. J. et al. Histone H3 lysine 79 methyl-transferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res. 70, 10234–10242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guenther, M. G. et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev. 22, 3403–3408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lin, Y. H. et al. Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 114, 651–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759–47762 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.d'A.d.F. laboratory is supported by FIRC (Fondazione Italiana per la Ricerca sul Cancro), AIRC (Associazione Italiana per la Ricerca sul Cancro), HFSP (Human Frontier Science Program), Cariplo Foundation, FP7-PEOPLE-2012-ITN (CodAge).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio d'Adda di Fagagna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulli, G., Di Micco, R. & di Fagagna, F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 12, 709–720 (2012). https://doi.org/10.1038/nrc3344

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3344

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer