Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The disappearing Barr body in breast and ovarian cancers

Abstract

Interest has recently reawakened in whether loss of the heterochromatic X chromosome (Barr body) is prevalent in certain breast and ovarian cancers, and new insights into the mechanisms involved have emerged. Mitotic segregation errors commonly explain the loss of the inactive X chromosome (Xi), but compromise of Xi heterochromatin in some cancers may signal broader deficits of nuclear heterochromatin. The debated link between BRCA1 and Xi might reflect a general relationship between BRCA1 and heterochromatin, which could connect BRCA1 to both epigenetic and genetic instability. We suggest that heterochromatic instability is a common but largely unexplored mechanism, leading to widespread genomic misregulation and the evolution of some cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three possible mechanisms that lead to the overexpression of X-linked genes in cancer.
Figure 2: Defects in XIST RNA and X inactivation might reflect a broader compromise of the heterochromatic compartment.
Figure 3: BRCA1 associates with heterochromatic structures.

Similar content being viewed by others

References

  1. Barr, M. L. & Moore, K. L. Chromosomes, sex chromatin, and cancer. Proc. Can. Cancer Conf. 2, 3–16 (1957).

    CAS  PubMed  Google Scholar 

  2. Hall, L. L. & Lawrence, J. B. The cell biology of a novel chromosomal RNA: chromosome painting by XIST/Xist RNA initiates a remodeling cascade. Semin. Cell Dev. Biol. 14, 369–378 (2003).

    Article  CAS  Google Scholar 

  3. Cohen, D. E. & Lee, J. T. X-chromosome inactivation and the search for chromosome-wide silencers. Curr. Opin. Genet. Dev. 12, 219–224 (2002).

    Article  CAS  Google Scholar 

  4. Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867 (2006).

    Article  CAS  Google Scholar 

  5. Chow, J. C., Yen, Z., Ziesche, S. M. & Brown, C. J. Silencing of the mammalian X chromosome. Annu. Rev. Genomics Hum. Genet. 6, 69–92 (2005).

    Article  CAS  Google Scholar 

  6. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    Article  CAS  Google Scholar 

  7. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  Google Scholar 

  8. Draviam, V. M., Xie, S. & Sorger, P. K. Chromosome segregation and genomic stability. Curr. Opin. Genet. Dev. 14, 120–125 (2004).

    Article  CAS  Google Scholar 

  9. Spatz, A., Borg, C. & Feunteun, J. X-chromosome genetics and human cancer. Nature Rev. Cancer 4, 617–629 (2004).

    Article  CAS  Google Scholar 

  10. Ganesan, S. et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111, 393–405 (2002).

    Article  CAS  Google Scholar 

  11. Pageau, G. J., Hall, L. L. & Lawrence, J. B. BRCA1 does not paint the inactive X chromosome to localize XIST RNA but may contribute to broad changes in cancer that impact XIST and Xi heterochromatin. J. Cell. Biochem. 100, 835–850 (2007).

    Article  CAS  Google Scholar 

  12. Xiao, C. et al. The XIST noncoding RNA functions independently of BRCA1 in X inactivation. Cell 128, 977–989 (2007).

    Article  CAS  Google Scholar 

  13. Silver, D. P. et al. Further evidence for BRCA1 communication with the inactive X chromosome. Cell 128, 991–1002 (2007).

    Article  CAS  Google Scholar 

  14. Rosen, P. P. et al. Barr body distribution and estrogen receptor protein in mammary carcinoma. Ann. Clin. Lab. Sci. 7, 491–499 (1977).

    CAS  PubMed  Google Scholar 

  15. Smethurst, M. et al. Steroid hormone receptors and sex chromatin frequency in breast cancer. J. Endocrinol. Invest. 4, 455–457 (1981).

    Article  CAS  Google Scholar 

  16. Perry, M. Evaluation of breast tumour sex chromatin (Barr body) as an index of survival and response to pituitary ablation. Br. J. Surg. 59, 731–734 (1972).

    Article  CAS  Google Scholar 

  17. Hultborn, R. et al. Prevalence of Klinefelter's syndrome in male breast cancer patients. Anticancer Res. 17, 4293–4297 (1997).

    CAS  PubMed  Google Scholar 

  18. Swerdlow, A. J. et al. Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Ann. Hum. Genet. 65, 177–188 (2001).

    Article  CAS  Google Scholar 

  19. Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F. & Jacobs, P. A. Mortality and cancer incidence in women with extra X chromosomes: a cohort study in Britain. Hum. Genet. 118, 255–260 (2005).

    Article  Google Scholar 

  20. Kawakami, T. et al. Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene 23, 6163–6169 (2004).

    Article  CAS  Google Scholar 

  21. Sirchia, S. M. et al. Loss of the inactive X chromosome and replication of the active X in BRCA1-defective and wild-type breast cancer cells. Cancer Res. 65, 2139–2146 (2005).

    Article  CAS  Google Scholar 

  22. Richardson, A. L. et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9, 121–132 (2006).

    Article  CAS  Google Scholar 

  23. Benoit, M. H. et al. Global analysis of chromosome X gene expression in primary cultures of normal ovarian surface epithelial cells and epithelial ovarian cancer cell lines. Int. J. Oncol. 30, 5–17 (2007).

    PubMed  Google Scholar 

  24. Jazaeri, A. A. et al. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J. Natl Cancer Inst. 94, 990–1000 (2002).

    Article  CAS  Google Scholar 

  25. Jazaeri, A. A. et al. BRCA1-mediated repression of select X chromosome genes. J. Transl. Med. 2, 32 (2004).

    Article  Google Scholar 

  26. Lakhani, S. R. et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin. Cancer Res. 11, 5175–5180 (2005).

    Article  CAS  Google Scholar 

  27. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  Google Scholar 

  28. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  Google Scholar 

  29. Clemson, C. M., Hall, L. L., Byron, M., McNeil, J. & Lawrence, J. B. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc. Natl Acad. Sci. USA 103, 7688–7693 (2006).

    Article  CAS  Google Scholar 

  30. Bailey, J. A., Carrel, L., Chakravarti, A. & Eichler, E. E. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl Acad. Sci. USA 97, 6634–6639 (2000).

    Article  CAS  Google Scholar 

  31. Carrel, L. et al. Genomic environment predicts expression patterns on the human inactive X chromosome. PLoS Genet. 2, e151 (2006).

    Article  Google Scholar 

  32. Wang, Z., Willard, H. F., Mukherjee, S. & Furey, T. S. Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput. Biol. 2, e113 (2006).

    Article  Google Scholar 

  33. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nature Rev. Cancer 4, 143–153 (2004).

    Article  CAS  Google Scholar 

  34. Csankovszki, G., Nagy, A. & Jaenisch, R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol. 153, 773–783 (2001).

    Article  CAS  Google Scholar 

  35. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    Article  CAS  Google Scholar 

  36. Narod, S. et al. Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 341, 1101–1102 (1993).

    Article  CAS  Google Scholar 

  37. Diaz-Perez, S. V. et al. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 174, 1115–1133 (2006).

    Article  CAS  Google Scholar 

  38. Starita, L. M. et al. BRCA1-dependent ubiquitination of γ-tubulin regulates centrosome number. Mol. Cell Biol. 24, 8457–8466 (2004).

    Article  CAS  Google Scholar 

  39. Joukov, V. et al. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539–552 (2006).

    Article  CAS  Google Scholar 

  40. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    Article  CAS  Google Scholar 

  41. Turner, J. M. et al. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 14, 2135–2142 (2004).

    Article  CAS  Google Scholar 

  42. Brown, C. J. et al. The Human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  Google Scholar 

  43. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    Article  CAS  Google Scholar 

  44. Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996).

    Article  CAS  Google Scholar 

  45. Pageau, G. J. & Lawrence, J. B. BRCA1 foci in normal S-phase nuclei are linked to interphase centromeres and replication of pericentromeric heterochromatin. J. Cell Biol. 175, 693–701 (2006).

    Article  CAS  Google Scholar 

  46. Vincent-Salomon, A. et al. X inactive-specific transcript RNA coating and genetic instability of the X chromosome in BRCA1 breast tumors Cancer Res. 67, 5134–5140 (2007).

    Article  CAS  Google Scholar 

  47. Welcsh, P. L. et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl Acad. Sci. USA 99, 7560–7565 (2002).

    Article  CAS  Google Scholar 

  48. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  49. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  Google Scholar 

  50. Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nature Rev. Cancer 4, 677–687 (2004).

    Article  CAS  Google Scholar 

  51. Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nature Cell Biol. 7, 420–428 (2005).

    Article  CAS  Google Scholar 

  52. Chadwick, B. P. & Willard, H. F. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum. Mol. Genet. 12, 2167–2178 (2003).

    Article  CAS  Google Scholar 

  53. Norwood, L. E. et al. A requirement for dimerization of HP1Hsα in suppression of breast cancer invasion. J. Biol. Chem. 281, 18668–18676 (2006).

    Article  CAS  Google Scholar 

  54. Bochar, D. A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000).

    Article  CAS  Google Scholar 

  55. Ye, Q. et al. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J. Cell Biol. 155, 911–921 (2001).

    Article  CAS  Google Scholar 

  56. Esteller, M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol. 45, 629–656 (2005).

    Article  CAS  Google Scholar 

  57. Disteche, C. M. Escape from X inactivation in human and mouse. Trends Genet. 11, 17–22 (1995).

    Article  CAS  Google Scholar 

  58. Miller, A. P. & Willard, H. F. Chromosomal basis of X chromosome inactivation: identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proc. Natl Acad. Sci. USA 95, 8709–8714 (1998).

    Article  CAS  Google Scholar 

  59. Frigola, J. et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genet. 38, 540–549 (2006).

    Article  CAS  Google Scholar 

  60. Tam, R., Smith, K. P. & Lawrence, J. B. The 4q subtelomere harboring the FSHD locus is specifically anchored with peripheral heterochromatin unlike most human telomeres. J. Cell Biol. 167, 269–279 (2004).

    Article  CAS  Google Scholar 

  61. Hall, L. L. et al. An ectopic human XIST gene can induce chromosome inactivation in postdifferentiation human HT-1080 cells. Proc. Natl Acad. Sci. USA 99, 8677–8682 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are funded by grants from the US National Institutes of Health and a Department of Defense predoctoral research fellowship (G.J.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David M. Livingston or Jeanne B. Lawrence.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

ovarian cancer

FURTHER INFORMATION

Shridar Ganesan's homepage

David Livingston's homepage

The Lawrence Laboratory webpage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pageau, G., Hall, L., Ganesan, S. et al. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 7, 628–633 (2007). https://doi.org/10.1038/nrc2172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2172

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing